• Title/Summary/Keyword: poly(N-vinylcarbazole)

Search Result 50, Processing Time 0.02 seconds

Homogeneously Dispersed Silver Nanoparticles on the Honeycomb-Patterned Poly(N-vinylcarbazole)-cellulose triacetate Composite Thin Films by the Photoreduction of Silver Nitrate

  • Kim, Kwang Il;Basavaraja, C.;Huh, Do Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1391-1396
    • /
    • 2013
  • The photocontrolled reduction of silver nitrate to silver (Ag) nanoparticles on honeycomb-patterned poly(N-vinylcarbazole) (PVK)-cellulose triacetate (CTA) composite thin films was studied. The composites were prepared via the oxidative polymerization of N-vinylcarbazole with ferric chloride using different CTA concentrations. A honeycomb-patterned film was fabricated by casting the composite solution under humid conditions. Ag particles with a homogeneous distribution were produced by the composite film in a moderate CTA concentration, whereas aggregated Ag was obtained from the pure PVK film.

Morphology of the Conducting Poly-N-vinylcarbazole-coated Silica Gel Nanocomposites

  • Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Revanasiddappa, M.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.298-302
    • /
    • 2010
  • We report the effect of surface morphology on the conductivity of the poly-N-vinylcarbazole (PVK)/silica gel ($SiO_2$) nanocomposites as a function of $SiO_2$ weight percentage (%).The polymerization of PVK was initiated by a free-radical polymerization. The surface morphology of the prepared composite shows the incorporation of $SiO_2$ in the prepared PVK-$SiO_2$ (PS) nanocomposites. The conductivity increased from $9.2{\times}10^{-5}S\;cm^{-1}$ to $9.6{\times}10^{-4}S\;cm^{-1}$ with the increase in the percentage of silica gel from 5 to 30%. The nanocomposites show a percolation behavior having a threshold value between 15 and 20%.

Effects of Buffer Layer in Organic Light-Emitting Diodes Using Poly(N-vinylcarbazole)

  • Chung, Dong-Hoe;Hong, Jin-Woong;Kim, Tae-Wan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.173-176
    • /
    • 2003
  • We have seen the effects of buffer layer in organic light-emitting diodes using poly(N-vinylcarbazole)(PVK). Polymer PVK buffer layer was made using static spin-casting method. Two device structures were made; one is ITO/TPD/Alq3/Al as a reference and the other is ITO/PVK/TPD/Alq3/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured with a variation of spin-casting speeds. We have obtained an improvement of luminous efficiency by a factor of two and half when the PVK buffer layer is used.

Cationic Polymerization of Electron-Donor Monomers by 1,1,2,2-Tetracyanocyclopropylstyrene, A New Electron-Acceptor

  • Ju-Yeon Lee;Sung-Ok Cho;A. B. Padias;H. K. Hall, Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.271-273
    • /
    • 1991
  • Poly (N-vinylcarbazole) was obtained spontaneously by 1,1,2,2-tetracyanocyclopropylstyrene(1) in polar solvents such as dichloromethane and acetonitrile at room temperature. The polymerization reactions were faster in more polar solvent and were not proceeded in less polar solvents such as chloroform and diethyl ether. The formation of poly (N-vinylcarbazole) was explained by bond-forming initiation theory, in which the initiating species are zwitterionic tetramethylene intermediates.

Fabrication and characteristics for the organic light emitting device from single layer poly(N-vinylcarbazole) (단층 poly(N-vinylcarbazole) 유기물 전기발광 소자의 제작 및 특성)

  • 윤석범;오환술
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.11
    • /
    • pp.55-61
    • /
    • 1998
  • Organic light emitting devices from a single layer thin film with a hole transport polymer, poly(N-vinylcarbazole) (PVK) doped with 2-(4-bi phenyl)-5-(4-t-butyl-phenyl) -1,3,4-oxadiazole (Bu-PBD) as electron transporting molecules and Coumurine 6(C6), 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), Rhodamine B as a emitter dye were fabricated. The sing1e layer structure and the use of soluble materials simplify the fabrication of devices by spin coating technique. The active layer consists of one polymer layer that is simply sandwiched between two electrodes, indium-tin oxide (ITO), and aluminum. In this structure, electron and hole inject from the electrodes to the PVK : Bu-PBD active layer. Respectively, Blue, green and orange colored emission spectrum by the use of TPB, C6, Rhodamine B dye emitted at 481nm, 500nm and 585nm were achieved during applied voltages. PVK materials can be useful as the host polymer to be molecularly doped with other organic dyes of the different luminescence colors. And EL color can be tuned to the full visible wavelength.

  • PDF

Surface Morphology and Electron Transport Properties of Composite Films by Poly-N-vinylcarbazole/Polyaniline

  • Basavaraja, C.;Jo, Eun-Ae;Kim, Bong-Sung;Mallikarjuna, H.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2967-2972
    • /
    • 2010
  • Poly-N-vinylcarbazole/polyaniline (PVK-PANI) composites are synthesized by varying target loading concentrations of aniline (0.025 - 0.1 M). The surface morphology of the composites is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The temperature-dependent DC conductivity of PVK-PANI composite films was studied at the temperature range of 300 - 500 K. The data suggest that the conductivity increase with an increase in aniline concentration in the composite with an increase in temperature. Further based on the conductivity behavior we can suggest that the PVK-PANI composites show a semiconducting behavior with a positive temperature coefficient of resistivity (TCR). The enhanced conductivity and the positive TCR of the PVK-PANI composite films may be due to the strong interaction between PANI and PVK in the composite films.

White Light-Emitting Electroluminescent Device with a Mixed Single Emitting Layer Structure (혼합 발광층을 이용한 백색 전계발광소자의 발광특성)

  • 김주승;서부완;구할본;조재철;박복기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.606-609
    • /
    • 1999
  • We fabricated white light-emitting diode which have a mixed single emitting layer containing poly(N-vinylcarbazole), trois(8-hydroxyquinoline)aluminum and poly(3-hexylthiophene) and investigated the emission properties of it. It is possible to obtain a blue light from poly(N-vinylcarbazole). green light from tris(8-hydroxyquinoline)aluminum and red light from poly(3-hexylthiophene). The fabricated device emits white light with slight orange light. We think that the energy transfer in a mixed layer occurred from PVK to Alq₃ and P3HT resulted in decreasing the blue light intensity from PVK. We find that the efficiency of the white light electroluminescent device can be improved by injecting electron more effectively and blue light need to improve the color purity of white light.

  • PDF

Electro-optical properties of organic EL device (유기 EL 소자의 전기-광학적 특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.252-257
    • /
    • 1997
  • Organic EL devices, which have the sing3e-layer structure of ITO(indium-tin-oxide) /PPV(poly(p-phenylene vinylene))/cathode and the double-layer structure of ITO/PVK (poly(N- vinylcarbazole)) /PPV/cathode, were fabricated and their electro-optical properties were investigated. Experimental results, in single-layer structure, shown that the increment of temperature for thermal conversion of PPV film from $140^{\circ}C$ to $260^{\circ}C$ decreases the maximum luminance from $118.8\;cd/m^{2}$(20V) to $21.14\;cd/m^{2}$(28V) and shift the maximum peak of EL spectrum from 500nm to 580nm. The lower the work function of cathode is, the more the luminance and injection current of device. In double-layer structure, as the concentration of PVK solution decreases from 0.5 wt% to 0.05 wt%, the luminance of device increases from $70.71\;cd/m^{2}$(32V) to $152.7\;cd/m^{2}$(26V).

  • PDF