• 제목/요약/키워드: poly(DL-lactic acid)

검색결과 14건 처리시간 0.027초

플루란 아세테이트 미립구를 이용한 단백질 전달 시스템 개발 (Development of Protein Delivery System using Pullulan Acetate Microspheres (PAM))

  • 나건;최후균
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권2호
    • /
    • pp.115-121
    • /
    • 2006
  • The aim of this study was to develop new protein/peptide depot system instead of poly(DL-lactic acid-coglycolic acid) (PLGA) microspheres. Pullulan was chemically modified by the addition of acetic anhydride (pullulan acetate; PA) and then investigated as new depot system for protein/peptide delivery. PA microspheres (PAM) with lysozyme as a model protein were prepared by w/o/w double emulsion method. The microspheres had a mean size of 10-50 mm with a spherical shape. The size distributions reduced with increasing the degree of acetylation. The loading efficiency of lysozyme was also increased. Lysozyme aggregation behavior in the microsphere was monitored to estimate the change of protein stability during preparation step. The ratios of protein aggregation in PAMs are lower than that of PLGA microsphere, in particular, PA 5 showed lowest as about 16%. The result indicated that the increase of acetylation suppressed the aggregation of protein. The release profiles of lysozyme from PAMs were significantly different. High acetylation effectively improved lysozyme release kinetics by reducing initial burst release and extending continuous release over a period of time. To check the effect of preservation for structural stability of lysozyme, the activity of lysozyme released from PA 5 was also observed. The activity of lysozyme was maintained almost 100% for 25 day. Therefore, PAM may become to a useful carrier for delivery of protein/peptide drugs, if it will be supported by biocompatibility and biodegradability results.

Recent advances in the reconstruction of cranio-maxillofacial defects using computer-aided design/computer-aided manufacturing

  • Oh, Ji-hyeon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.2.1-2.7
    • /
    • 2018
  • With the development of computer-aided design/computer-aided manufacturing (CAD/CAM) technology, it has been possible to reconstruct the cranio-maxillofacial defect with more accurate preoperative planning, precise patient-specific implants (PSIs), and shorter operation times. The manufacturing processes include subtractive manufacturing and additive manufacturing and should be selected in consideration of the material type, available technology, post-processing, accuracy, lead time, properties, and surface quality. Materials such as titanium, polyethylene, polyetheretherketone (PEEK), hydroxyapatite (HA), poly-DL-lactic acid (PDLLA), polylactide-co-glycolide acid (PLGA), and calcium phosphate are used. Design methods for the reconstruction of cranio-maxillofacial defects include the use of a pre-operative model printed with pre-operative data, printing a cutting guide or template after virtual surgery, a model after virtual surgery printed with reconstructed data using a mirror image, and manufacturing PSIs by directly obtaining PSI data after reconstruction using a mirror image. By selecting the appropriate design method, manufacturing process, and implant material according to the case, it is possible to obtain a more accurate surgical procedure, reduced operation time, the prevention of various complications that can occur using the traditional method, and predictive results compared to the traditional method.

키토산이 코팅된 PLGA 나노입자의 제조 및 특성 (Preparation and Characterization of Chitosan-coated PLGA Nanoparticle)

  • 유수경;나재운;정경원
    • 공업화학
    • /
    • 제32권5호
    • /
    • pp.509-515
    • /
    • 2021
  • 본 연구는 생체적합성 및 생분해성의 특성을 갖는 PLGA (poly lactic-co-glycolic acid)를 이용하여 이중(w/o/w) emlusion과 유화 용매-증발 기법을 통해 PLGA 나노입자(PNP)를 제조하였고, 이에 키토산을 전하 상호작용을 통해 키토산이 코팅된 PLGA 나노입자(CPNP)를 제조하여 입자의 안정성과 생체이용률을 극대화할 수 있는 경구 투여용 약물 전달체로 사용 가능성을 입증하고자 하였다. CPNP의 화학적 구조는 1H-NMR 및 FT-IR을 통해 분석하였으며, 모든 특성 피크가 나타남으로써 성공적으로 제조되었음을 확인하였다. 또한, CPNP의 입자 크기, 제타 전위 및 형태학적 이미지는 DLS와 TEM을 이용하여 각각 분석하였으며, TGA를 통해 CPNP의 열적 분해 거동을 관찰하였다. 또한, CPNP의 세포 독성은 HEK293 및 L929 세포에서 MTT assay를 수행하여 확인하였고, 모든 농도에서 70% 이상의 세포 생존율을 확인함으로써 독성이 없음을 입증하였다. 이러한 결과를 통해 본 연구에서 개발된 CPNP가 경구용 약물 전달체로써 사용 가능성이 있음을 제안한다.

Enhancement of Antigen-specific Antibody and $CD8^+$ T Cell Responses by Codelivery of IL-12-encapsulated Microspheres in Protein and Peptide Vaccination

  • Park, Su-Hyung;Chang, Jun;Yang, Se-Hwan;Kim, Hye-Ju;Kwak, Hyun-Hee;Kim, Byong-Moon;Lee, Sung-Hee;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • 제7권4호
    • /
    • pp.186-196
    • /
    • 2007
  • Background: Although IL-12 has been widely accepted to playa central role in the control of pathogen infection, the use of recombinant IL-12 (rIL-12) as a vaccine adjuvant has been known to be ineffective because of its rapid clearance in the body. Methods: To investigate the effect of sustained release of IL-12 in vivo in the peptide and protein vaccination models, rIL-12 was encapsulated into poly ($A_{DL}$-lactic-co-glycolic acid) (PLGA). Results: We found that codelivery of IL-12-encapsulated microspheres (IL-12EM) could dramatically increase not only antibody responses, but also antigen-specific $CD4^+\;and\;CD8^+$ T cell responses. Enhanced immune responses were shown to be correlated with protective immunity against influenza and respiratory syncytial virus (RSV) virus challenge. Interestingly, the enhancement of $CD8^+$ T cell response was not detectable when $CD4^+$ T cell knockout mice were subjected to vaccination, indicating that the enhancement of the $CD8^+$ T cell response by IL-12EM is dependent on $CD4^+$ T cell "help". Conclusion: Thus, IL-12EM could be applied as an adjuvant of protein and peptide vaccines to enhance protective immunity against virus infection.