• 제목/요약/키워드: poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

검색결과 44건 처리시간 0.033초

Controlled Release of Gentamicin Sulfate from Poly(3-hydroxybu-tyrate-co-3-hydroxyvalerate) Wafers for the Treatment of Osteomyelitis

  • Gilson Khang;Park, Hak-Soo;John M. Rhee;Yoon, Sung-Chul;Cho, Jin-Cheol;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제8권6호
    • /
    • pp.253-260
    • /
    • 2000
  • Biodegradable wafers were prepared with poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV;5, 10, and 15 mole% for 3-hydroxyvalerate) by simple heat pressing method for the sustained release of antibiotic agent, gentamicin sulfate (GS) to investigate the possibility of the treatment for osteomyelitis. The effects of hydroxyvalerate (HV) content, thickness of wafers, various types of additives such as sodium dodecyl sulfate (SDS), microcrystalline cellulose, polyvinylpyrrolidone, and hydroxypropylcellulose (HPC), and different initial drug loading ratio on the release profile have been investigated. In vitro release studies showed that different release patterns and rates could be achieved by simply modifying factors in the preparation conditions. PHBV wafers with 3 mm thickness, 10% of GS initial loading, 15% of HV content and addition of 5% of SDS and HPC were free from initial burst and a near-zero-order sustained release was observed for over 30 days. It might be suggested that the mechanisms of G5 release may be more predominant simple dissolution and diffusion of GS than erosion of PHBV in our system.

  • PDF

PHBV를 이용한 황산겐타마이신 서방성 제형의 제조와 방출거동 (Preparation of Biodegradable PHBV Devices Containing Gentamicin Sulfate)

  • 최학수;김상욱;윤덕일;강길선;이종문;김용식;이해방
    • 폴리머
    • /
    • 제25권3호
    • /
    • pp.334-342
    • /
    • 2001
  • 항생제의 서방형 전달을 위해 황산겐타마이신 gentamicin sulfate (GS)을 함유한 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) 제형을 제조하였다. 본 연구에서는 제형의 두께, hydroxyvalerate (HV) 농도, 초기 약물함유량 및 첨가제의 함유에 따른 약물 방출거동의 변화를 조사하였다. 전자주사현미경을 이용하여 제형의 표면형태와 매트릭스 내부 약물의 조성을 관찰한 결과 약물방출 전과 후 모두 거칠고 다공성인 형태를 가짐을 알 수 있었다. 또한, HV와 첨가제의 함량이 증가할수록 약물이 고분자 매트릭스에 더 조밀하게 배열함을 관찰하였고, 이러한 구조가 약물의 방출에 영향을 미침을 알았다. HPLC를 이용하여 약물의 방출량을 측정한 결과, 모든 제형이 복합적인 방출 방향을 나타내었고, 일부 매트릭스는 30일 동안 거의 영차에 가까운 방출거동을 보였다. 이상의 결과에서 우리는 제형의 두께, 고분자 매트릭스의 조성, 첨가제의 함유량 등을 조절함으로 약물 방출을 제어할 수 있음을 확인하였다.

  • PDF

Effect of Poly(3-hydroxibutyrate-co-3-hydroxivalerate) Surface with Different Wettability on Fibroblast Behavior

  • Lee, Sang-Jin;Lee, Young-Moo;Khang, Gilson;Kim, Un-Young;Lee, Bong;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.150-157
    • /
    • 2002
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity. due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [$^3$H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettabilily of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

Effect of Levulinic Acid on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862

  • Chung, Sun-Ho;Park, Gang-Guk;Kim, Hyung-Woo;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • 제39권1호
    • /
    • pp.79-82
    • /
    • 2001
  • The influence of levulinic acid (LA) on the production of copolyester consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) by Ralstonia eutropha was investigated. Addition of LA into the culture medium greatly increased the molar fraction of 3HV in the copolyester, indicating that LA can be utilized as a precursor of 3HV. In shake flask culture, the 3HV content in the copolyester increased from 7 to 75 mol% by adding 0.5 to 4.0 g/L LA to the medium containing fructose syrup as a main carbon source. A maximal copolyester concentration of 3.6 g/L (69% of dry cell weight) was achieved with a 3HV content of 40 mo1% in a jar fermentor culture containing 4.0 g/L of LA. When LA (total concentration, 4 g/L) was added repeatedly into a fermentor culture to maintain its concentration at a low level, the copolyester content and the 3HV yield from LA reached up to 85% of dry cell weight and 5.0 g/g, respectively, which were significantly higher than those when the same concentration of the LA was supplied al1 at once. The present results indicated that LA is more effective than propionate or valerate as a cosubstrate fur the production of copolyesters with varying molar fractions of 3HV by R. eutropha.

  • PDF

Pseudomonas sp. HJ-2를 이용한 고무탄성 Polyhydroxyalkanoate의 생산 (Production of Rubber-Elastic Polyhydroxyalkanoates by Pseudomonas sp. HJ-2)

  • 정정욱;최강욱;김영백;이영하
    • 미생물학회지
    • /
    • 제36권2호
    • /
    • pp.155-160
    • /
    • 2000
  • Pseudomonas sp. HJ-2는 heptanoinc acid를 단일탄소원으로 이용하여 3-hydroxybutyrate (3HB),3-hydroxy-velerate (3HV) 및 3-hydroxybutyrate (3HHp)를 구성 단위체로 하는 고무탄성 polyhydroxyalkanoate (PHA)를 생합성한다. 이 미생물 고분자는 poly(3HB-co-3HV)공중합체와 poly(3HHp) 단일중합체로 이루어진 혼합물임이 밝혀졌다. 본 연구에서는 PHA가 고무탄성체로서의 성질을 유지하는데 필용한 단위체 조성과 HJ-2의 배양조건이 PHA의 생산 및 단위체 조성에 미치는 영향에 대하여 조사하였다. 생합성된 PHA의 탄성률은 poly(3HHp)의 존재로 크게 감소되었으나, 3HV의 함량이 높은 poly(3HB-co-3HV) 자체도 최대변형률 740%로서 고무탄성체로서의 성질을 보였다. HJ-2의 생장 및 PHA 생합성은 탄소원인 heptanoic acid의 초기농도가 40mMdlfEo 가장 높았으나, 50mM의 농도에서는 큰 저해를 받았다. PHA 생합성은 질소와 인이 결핍된 조건에서 크게 증가되었다. 배양액의 pH 및 통기는 HJ-2로부터 생합성되는 PHA의 단위체 조성에 큰 영향을 주는 것으로 나타났다. pH 7.5에서 생합성되는 고분자는 poly(3HB-co-38% 3HV)인 반면에 pH8.0에서의 고분자는 3HHp가 95%를 차지하였다. 발효조의 교반속도를 달리한 실험의 결과 고분자 내 3HHp의 함량은 산소전달 속도가 높아질수록 증가하였다.

  • PDF

플라즈마를 이용한 미생물합성 폴리에스테르의 표면개질과 효소분해성 (Surface Modification and Enzymatic Degradation of Microbial Polyesters by Plasma Treatments)

  • 김준;이원기;류진호;하창식
    • 접착 및 계면
    • /
    • 제7권2호
    • /
    • pp.19-25
    • /
    • 2006
  • 미생물 합성 고분자인 poly(hydroxylalkanoate)s (PHAs)의 초기효소분해는 표면침식의 메커니즘으로 진행하므로 이들의 분해거동은 표면특성을 개질로서 조절할 수 있다. 본 연구에서는 효소분해속도를 조절하기 위하여 플라즈마 기법을 PHAs 표면특성의 개질에 적용하였다. $CF_3H$$O_2$ 플라즈마를 사용하여 재료 표면에 각각 소수성 및 친수성을 부여하였다. 효소분해 실험은 pH 7.4의 0.1 M potassium phosphate 완충용액에서 Alcaligenes facalis T1에서 정제된 poly(hydroxybutyrate) 분해효소를 첨가하여 행하였다. $CF_3H$ 플라즈마 처리된 시편의 경우 표면 층의 불소화에 따른 소수성의 증가와 분해 효소에 대한 비활성으로 초기분해 속도가 상당히 지연됨을 관찰하였으나 $O_2$ 플라즈마 처리에 의한 표면 친수성은 분해속도의 촉진 등에 큰 영향을 미치지 않았다.

  • PDF

표면 개질을 통한 미생물합성 폴리에스테르의 효소분해속도 조절 (Control of Enzymatic Degradability of Microbial Polyester by Surface Modification)

  • 이원기
    • 한국환경과학회지
    • /
    • 제11권12호
    • /
    • pp.1315-1320
    • /
    • 2002
  • Since the enzymatic degradation of microbial poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] (P(3HB-co-3HV)) initially occurs by a surface erosion process, a degradation behavior could be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma gas discharge and blending techniques were used to modify the surface of microbial P(3HB-co-3HV). The surface hydrophobic property of P(3HB-co-3HV) film was introduced by CF$_3$H plasma exposure. Also, the addition of small amount of polystyrene as a non-degradable polymer with lower surface energy to P(3HB-co-3HV) has been studied. The enzymatic degradation was carried out at 37 $^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. Both results showed the significant retardation of enzymatic erosion due to the hydrophobicity and the enzyme inactivity of the fluorinated- and PS-enriched surface layers.

The Studies of Copolymer, Poly (3-hydroxybutyrate-co-3-hydroxy valerate) Synthesis in Recombinant pha+ Escherichia coli

  • Lee, Ha-Young;Rhie, Ho-Gun
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1996년도 한국생물과학협회 국제학술대회
    • /
    • pp.195.2-195
    • /
    • 1996
  • acs gene cloning was constructed by subcloning the 2.2-kb MunI-MunI restriction fragment of 638 and 639 which include acs gene from the kohara phage into the unique EcoRI site of pUC18 and pJM9131 containing the PHA biosynthesis genes. Then recombinant E. coli fadRatoC(Con) mutants containing the polyhydroxyalkanoate(PHA) biosynthesis genes are able to incoporate s significant levels of 3-hydroxyvalerate (3HV) into the copolymer [P(3HB-co-3HV)]. Quantitative determination of PHB and P(3HB-co-3HV) was performed by gas-chromatographic analysis of extracts obtained from methanolysis of lyophilized cells.

  • PDF

인산염 제한하에서 Alcaligenes eutrophus의 유가식 배양에 의한 Polyhydroxyalkanoates의 대량 산과 축적특성 (Mass Production and Accumulation Characteristics of Polyhydroxyalkanoates by Fed-batch culture of Alcaligenes eutrophus under Phosphate Limitation)

  • 류희욱;조경숙;장용근
    • KSBB Journal
    • /
    • 제13권2호
    • /
    • pp.187-194
    • /
    • 1998
  • For mass production of polyhydroxyalkanoates (PHA), high cell density cultures of Alcaligenes eutrophus by fed-batch culture under phosphate-limitation condition has been investigated. PHA accumulation by the regulation by the regulation of initial phosphate concentration could be automatically induced, and high density cell culture above 200 g/L also could be successfully produced. The production of Poly-$\beta$-hydroxybutyrate (PHB) and dry cell weight increased with increasing the initial phosphate concentration. When the initial concentrations of phosphate were in the ranges of 1.5~4.5 g-PO$_4$/L, PHB and dry cell weight obtained were 83~266 g/L and 61~216 g/L, respectively, and PHB productivity was in the ranges of 1.35~3.10 g/L.h. When a mixture of glucose and propionic acid is used as carbon sources, poly(3-hydroxybutyrate-co-poly-3-hydroxyvalerate), P(3HB-co-3HV), could be also successfully produced under phosphate limitation condition. When the mole ratio of propionic acid to glucose in the feeding solution is 0.22, a final dry cell weight of 150 g/L and a P(3-HB-co-3HV) of 90 g/L were produced. Morphological changes and size distribution of PHB granules synthesized in A. eutrophus under phosphate-limitation condition are determined by TEM during the course of fed-batch. Mean granule diameters of PHB produced are in the range of 0.36~0.39 $\mu$m, and mean cell size was elongated from 0.54~0.59 $\mu$m$\times$ 1.3~1.5 $\mu$m to 0.83~0.89 $\mu$m $\times$2.0~2.3 $\mu$m. Phosphate concentration in media did not affect size distribution of PHB granule and cell.

  • PDF