• 제목/요약/키워드: pollution reduction

검색결과 1,018건 처리시간 0.026초

경기도 도시지역 환경대기질의 시공간적 추이와 특성 (Temporal and Spatial Variation and Characteristics of Ambient Air Quality in Urban Areas in Gyeonggi Province)

  • 김종찬
    • 한국환경보건학회지
    • /
    • 제38권3호
    • /
    • pp.269-276
    • /
    • 2012
  • Objectives: The purpose of this study was to provide policy directions for air pollution reduction by analyzing the variation in the characteristics of air contaminants around the Gyeonggi Province area. Methods: The data used in the study was obtained from air quality monitoring stations operated by the Gyeonggi Provincial Government. The target area was the air quality management area of the Gyeonggi Province region. Results: The concentration of $PM_{10}$ (particles measuring $10{\mu}m$ or less) in 2009 was $60{\mu}g/m^3$, which has been reduced by about 2.7% per year after improvement countermeasures were emplaced. The air pollution control policy was especially more effective for coarse particulate matter (CPM, $PM_{10-2.5}$). The improvement of $NO_2$ pollution was generally very low, especially in cities which had considerable automobile traffic. The concentration of $SO_2$ pollution was rapidly improved in industrial areas, but did not show any difference for multiple and general cities. The predicted concentration of $PM_{10}$ for 2014 based on the trend over 2001-2009 was $53.4{\mu}g/m^3$, which fails to meet the target concentration of $40{\mu}g/m^3$. The predicted concentration of $NO_2$ shows a very low probability of achieving the target concentration of 22 ppb, and thus the current improvement of air quality has proven unsatisfactory. Conclusion: Air pollution control policy should be enforced according to regional pollution characteristics in order to obtain maximum effectiveness in improvement.

수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구 (An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine)

  • 김인구;손지환;김정화;김정수;이성욱;김선문
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

SRF 사용 시 발생되는 대기오염물질 (PM, NOx)의 국가배출량 기여도 평가 (SRF Combustion Pollutants' Impact on Domestic Emissions Assessments)

  • 김상균;장기원;김종현;유철;홍지형;김형천
    • 한국대기환경학회지
    • /
    • 제28권6호
    • /
    • pp.656-665
    • /
    • 2012
  • Recently, yearly production of SRF (Solid Recovered Fuel) as an alternative fuel has been rapidly increasing because of the limited waste disposal, rise in oil prices and reduction of greenhouse gas emission. However, SRF using facilities are excluded from the National Air Pollutant Emission Estimation because SRF using facilities are not yet included among the SCC (Source Classification Code). The purpose of this research was to estimate the emission and emission factor of SRF using facilities' PM and $NO_x$, in order to investigate whether or not they are included in the National Air Pollutant Emission Estimation. The emission factors of SRF using facilities' PM and $NO_x$ are calculated as 0.216 kg/ton, and 3.970 kg/ton, and the emission was estimated based on the yearly total SRF usage of 2011. The results above was 18.7% for PM and 12.8% for $NO_x$ emissions from combustion facility (SCC2) in manufacturing industry combustion (SCC1) of CAPSS. If CAPSS estimate the emission by adding SCC on unlisted SRF in case of Boiler (SCC3) fuel, both PM and $NO_x$'s emissions would increase by 15.8% and 11.3% compare to the emissions for the existing combustion facility. As a result, emissions caused by SRF should be considered when calculating the National Air Pollutant Emission Estimation. In addition, further researches to develop emission factor and improve subdivided SCC should be done in the future, for the accurate and reliable estimation of National Emission.

CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구 (An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine)

  • 김인구;손지환;김정화;김선문;김정수;이성욱
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Strategies to Reduce Environmental Pollution from Animal Manure: Nutritional Management Option - Review -

  • Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.657-666
    • /
    • 1999
  • The first option in manure management is developing an environmentally sound nutritional management. This includes proper feeding programs and feeds which will result in less excreted nutrients that need to be managed. Critical components that should be controlled are N, P and minerals that are used at supranutritional levels. Amino acid supplementation and protein restriction reduce N excretion in the monogastric animals. Supplementation with enzymes, such as carbohydrases, phytase and proteases, can be used to reduce excretion of nutrients and feces by improving digestibility of specific nutrients. Growth promoting agents, such as antibiotics, beta-agonists and somatotropin, increase the ability of animals to utilize nutrients, especially dietary protein, which results in reduced excretion of N. Some microminerals, such as Cu and Zn, are supplemented at supranutritional level. Metal-amino acid chelates, metal-proteinates and metal-polysaccharide complexes can be used at a much lower level than inorganic forms of metals without compromising performance of animals. Deodorases can be used to avoid air pollution from animal manure. Nutritional management increases costs to implement. It is necessary to assess the economics in order to find an acceptable compromise between the increased costs and the benefits to the environment and production as well.

SWAT 모형을 이용한 최적관리기법 적용에 따른 충주댐 유역의 하천수질 개선연구 (Improvement of Stream Water Quality by Applying Best Management Practices to Chungjudam Watershed using SWAT Model)

  • 유영석;박종윤;신형진;김샛별;김성준
    • 한국농공학회논문집
    • /
    • 제54권1호
    • /
    • pp.55-62
    • /
    • 2012
  • This study is to assess the reduction of nonpoint source pollution by applying Best Management Practice (BMP) in Chungju-dam watershed (6,585.1 $km^2$) using Soil and Water Assessment Tool (SWAT). The model was calibrated using 3 years (1998-2000) daily streamflow at 3 locations and monthly water quality of sediment (SS), total nitrogen (T-N) and total phosphorus (T-P) data at 2 locations and validated for another 3 years (2001-2003) data. The 5 BMPs of streambank stabilization, porous gully plugs, recharge structures, terrace, and contour farming were applied to stream and area with the specific criteria of previous researches. Through the parameter sensitivity analysis, the farming practice P-factor and Manning's roughness of stream were sensitive. Overall, the NPS reduction effect was high for streambank stabilization, terrace, and contour farming. At the watershed outlet, the SS, T-P, and T-N were reduced by 64.4 %, 62.8 % and 17.6 % respectively.

청정생산방법론에 의한 염료생산 공정의 청정화 (Pollution prevention in the process of dye production by cleaner production methodology)

  • 박철환;김탁현;김상용
    • 청정기술
    • /
    • 제9권3호
    • /
    • pp.145-151
    • /
    • 2003
  • 청정생산방법론을 적용하여 염료생산공정의 청정화를 꾀하고자 하였다. 본 고에서는 반응중에 사용되는 공정수와 유기용매인 DMF의 회수방안을 모색하고, 고급산성염료 제조공정 보완을 통한 제품질 향상 방안을 마련하고자 하였다. 청정생산방법론의 적용순서는 기업경영진의 결정, 대안도출, 대안평가 및 우선순위 결정, 실행, 모니터링 및 지속적 실행단계의 절차를 따라 수행하였으며, 이의 수행결과 DMF의 회수와 함께 용수사용량을 25% 이상 절감할 수 있었으며, 고급산성염료의 경우 2배 이상의 용해도 향상을 통하여 제품의 가치를 상승시킬 수 있었다.

  • PDF

배출가스 저감장치(DPF) 부착에 따른 사회적 편익 추정 (Estimating Social Benefits According to Exhaust Gas Reduction Devices (DPF))

  • 최성규;김용달;김호경;배진민
    • 자동차안전학회지
    • /
    • 제10권3호
    • /
    • pp.27-31
    • /
    • 2018
  • The People have a bad perception about diesel vehicle because of serious air pollution, increase fine dust and global vehicle company's diesel gate. Starting the project in 2005, Ministry of Environment has been supporting that is exhaust gas reduction devices (DPF) on diesel vehicles in the metropolitan area. During the period of 2017.01.01 to 2017.12.31, 10,030 diesel vehicles installed exhaust gas reduction devices (DPF). Among them, 9,921 diesel vehicles that they have sufficient data for analysis were analyzed amount of particulate matter reduction before and after exhaust gas reduction devices (DPF) was installed. Opacity smoke meter measures the concentration of particulate matter. So concentration of particulate matter was converted into a mass unit, and then calculated the total amount of reduced particulate matter. It was estimated that social benefits is costs required to remove it from the total amount of particulate matter.

동력학-전달 모델을 활용한 식품 폐기물 감량 해석 (Simulative Calculations of Food Waste Reduction Using Kineto-transport Models)

  • 조선주;김태욱;권성현;조대철
    • 한국환경과학회지
    • /
    • 제30권6호
    • /
    • pp.429-439
    • /
    • 2021
  • Food waste is both an industrial and residential source of pollution, and there has been a great need for food waste reduction. As a preliminary step in this study, waste reduction is quantitatively modeled. This study presents two models based on kinetics: a simple kinetic model and a mass transport-shrinking model. In the simple kinetic model, the smaller is the reaction rate constant ratio k1, the lower the rate of conversion from the raw material to intermediate products. Accordingly, the total elapsed reaction time becomes shorter. In the mass transport-shrinking model, the smaller is the microbial decomposition resistance versus the liquid mass transfer resistance, the greater is the reduction rate of the radius of spherical waste particles. Results showed that the computed reduction of waste mass in the second model agreed reasonably with that obtained from a few experimantal trials of biodegradation, in which the microbial effect appeared to dominate. All calculations were performed using MATLAB 2020 on PC.

Analysis on an Oxidation-Reduction Reaction of Photocatalytic Plasma Complex Module

  • KIM, Young-Do;KWON, Woo-Taeg
    • 웰빙융합연구
    • /
    • 제5권2호
    • /
    • pp.21-27
    • /
    • 2022
  • Purpose: This study is about photocatalytic technology and plasma oxidation-reduction technology. To the main cause of exposure to odor pollution, two deodorization techniques were applied to develop a module with higher removal efficiency and ozone reduction effect. Research design, data and methodology: A composite module was constructed by arranging two types of dry deodorization equipment (catalyst, adsorbent) in one module. This method was designed to increase the responsiveness to the components of complex odors and the environment. standard, unity, two types of oxidizing photo-catalyst technology and plasma dry deodorization device installed in one module to increase the potential by reduction to 76% of ozone, 100%, and 82%. Results: The complex odor disposal efficiency was 92%. Ammonia was processed with 50% hydrogen sulfide and 100% hydrogen sulfide, and ozone was 0.01ppm, achieving a target value of 0.07ppm or less. The combined odor showed a disposal efficiency of 93%, ammonia was 82% and hydrogen sulfide was 100% processed, and ozone achieved a target value of 0.07 ppm or less. Conclusions: Ozone removal efficiency was 76% by increasing Oxidation-Reduction Reaction(ORR). The H2S removal efficiency of the deodorizer was higher than that of the biofilter system currently used in sewage disposal plants.