• Title/Summary/Keyword: pollution loads

Search Result 381, Processing Time 0.03 seconds

Water Quality Improvement Plan for Small Streams in the Northernmost Basin of Bukhan River based on Pollution Grade and Typological Analysis Linkage (오염등급과 유형화 분석의 연계에 의한 북한강 최북단 유역 소하천의 수질개선방안 연구)

  • Lee, Yong-Seok;Jun, Man-Sig;Kim, Moon-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.281-290
    • /
    • 2016
  • In the northernmost basin of the Bukhan River, pollution sources can have a concentrated distribution. In these basins, small streams show low flow with various and rapid water quality change in low pollutants load. Therefore, a water quality improvement plan of small streams and main stem will be necessary to establish the characteristics of small streams. This study selected a representative Hwacheon-gun in the northernmost basin of the Bukhan River. Hydro analysis was performed with GIS tools using DEM. A total of 152 small streams were listed. A total of 51 survey locations were selected after applying the selection criteria. Flow rate and water qualities were investigated. Pollution sources and pollutants loads were calculated for each basin. Pollution grade and typological classification were performed by cluster analysis using standardized environmental condition factors. As a result, G04, G01, H01 locations were found to have the worst pollution grades whereas J01, P01, and P02 had less pollution. Typological analyses were able to classify six types for the surveyed small streams. An effective water quality improvement plan was obtained based on the results of pollution grade and typological analysis using environmental condition factors of this study.

Necessity of Refractory Organic Matters Management in Total Maximum Daily Loads (TMDLs) (수질오염총량관리제에서 난분해성 유기물질 관리 필요성 및 개선방안)

  • Park, Jae Hong;Park, Bae Kyoung;Lee, Jae Kwan;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.393-399
    • /
    • 2013
  • To control organic matters, it needs to manage not only biodegradable organic matters but also refractory organic matters. Refractory organic matters from municipal wastewater, industrial wastewater, non-point sources and etc., have been continuously discharged to the near watersheds. It is estimated that the refractory organic matter ratios are continuously increased in waterbody. In watersheds of the Total Maximum Daily Loads (TMDLs), it was investigated that COD/BOD ratios increased in many unit watersheds of the 4 major river basins. The portions COD/BOD ratios increased were found to be a 97% of Geum River unit watersheds, a 81% of Yeongsan/Seumjin River unit watersheds, a 78% of Nakdong River unit watersheds, a 70% of Han River unit watersheds, respectively. Therefore, it has become important for establishment of effective management strategies to control refractory organic matter in watersheds of the Total Maximum Daily Loads (TMDLs). In order to properly manage organic matters including refractory organic matters, the present organic indicator (BOD) has to be converted to TOC (or COD). Compared to COD and BOD, TOC, as a organic matter indicator, is evaluated more appropriate.

Development of a Flow Duration Curve with Unit Watershed Flow Data for the Management of Total Maximum Daily Loads (수질오염총량관리 단위유역 유량측정자료를 이용한 유황곡선 작성)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.224-231
    • /
    • 2012
  • It is necessary to develop flow duration curve (FDC) on each unit watershed in order to analyze flow conditions in the stream for the management of Total Maximum Daily Loads (TMDLs). This study investigated a simple method to develop FDC for the general use of the curve. A simple equation for daily flow estimation was derived from the regression analysis between the 8-day interval flow data of a unit watershed and the daily flow monitoring data of an adjacent upstream region. FDC can be prepared with the calculation of daily flow by the equation for each unit watershed. An annual and a full-period FDC were drawn for each unit watershed in Guem river basin. Standard flow such as low and ordinary flow can be obtained from the annual FDC. Major percentile of flow such as 10, 25, 50, 75 or 90% can be obtained from the full-period FDC. It is considered that this simple method of developing FDC can be utilized more widely for the calculation of standard flow and the assessment of water quality in the process of TMDLs.

Study on Representation of Pollutants Delivery Process using Watershed Model (수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구)

  • Hwang, Ha Sun;Rhee, Han Pil;Lee, Sung Jun;Ahn, Ki Hong;Park, Ji Hyung;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

Evaluation of Stream Water Quality to Select Target Indicators for the Management of Total Maximum Daily Loads (수질오염총량관리 대상물질 선정을 위한 하천수질 평가)

  • Park, Jun Dae;Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.630-640
    • /
    • 2013
  • It is one of the most critical steps identifying impaired waterbodies exactly in the selection of target water quality indicators for the management of Total Maximum Daily Loads (TMDLs). Excess ratio and excess level were applied and analyzed by the stream zone basis in order to evaluate water impairment for Nakdong, Geum, Youngsan and Seomjin rivers. Each river basin was divided into stream zones in the light of its watershed and waterbody characteristics. Selected water quality parameters discussed in this study were pH, DO, BOD, COD, SS, T-P, T-Coli and F-Coli. The excess ratios of the water quality parameters were used to discriminate water bodies that did not meet water quality standards. The excess levels were used to classify the degradation of water quality. The excess ratios and the excess levels to the water quality criteria of the medium influence areas were used for each stream zone. The results indicate that the excess ratios and the excess levels are varied on the stream zone in each river basin. Three parameters, pH, DO and SS, met water quality standards in all stream zones. The other five parameters indicated very high excess ratios in most waterbodies, and especially T-P and T-Coli revealed to be very high excess levels in some waterbodies. These parameters could be considered as major target indicators for the management of TMDLs.

Analysis of Changes in Land Use and Pollution Load for the Unit Watersheds of Total Maximum Daily Loads (총량관리 단위유역의 토지이용 변화 및 오염물질 배출형태 분석)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.128-137
    • /
    • 2014
  • The land use of the unit watersheds should be maintained appropriately in order to keep the load allotment stable for the management of Total Maximum Daily Loads (TMDLs). This study classified the land area in four types and analyzed the use of each land type and its changing pattern by calculating the occupation and conversion ratios for the unit watersheds in three river basins. The forest land showed the greatest occupation ratio with 63.0%, followed by the farm land with 23%, the other area with 8.0% and the site area with 6.0% in 2003. The occupation ratio of the site and the other area increased by 0.4% and 0.2% respectively, and that of the farm and the forest land decreased by 0.4% and 0.2% respectively in 2007. The conversion ratio for the site area ranged from 1.65% to 1.97%, for the farm land from -0.47% to -0.33%, for the forest land from -0.10% to -0.04% and for the other area from 0.17% to 1.97%. It can be inferred that the decrease in the farm and the forest land contributed to the increase in the site area and that the increase in the other area was mainly made by the decrease in the forest land. It could be more effective to take into account the changes in the site area and in the forest land in the process of developing the TMDL plans.

Application of Ecosystem Model for Eutrophication Control in Coastal Sea of Saemankeum Area -2. Quantitative Management of Pollutant Loading- (새만금 사업지구의 연안해역에서 부영양화관리를 위한 생태계모델의 적용 -2. 오염부하의 정량적 관리-)

  • Kim Jong Gu;Kim Yang Soo;Cho Eun Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.356-365
    • /
    • 2002
  • One of the most important factors that cause eutrophication is nutrient materials containing nitrogen and phosphorus which stem from excreation of terrestial sources and release from sediment. Therefore, to improve water quality, the reduction of these nutrients loads should be indispensible. At this study, the three-dimensional numerical hydrodynamic and ecosystem model, which was developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the eutrophication. The residual currents, which were obtained by integrating the simulated tidal currents over 1 tidal cycle, showed the presence of a typical counterclockwise eddies between Gyewha and Garyuk island. Density driven currents were generated westward at surface and eastward at the bottom in Saemankeum area where the fresh waters are flowing into, The ecosystem model was calibrated with the data surveyed in the field of the study area in annual average. The simulated results were fairly good coincided with the observed values within relative error of $30\%$. The simulations of DIN and DIP concentrations were performed using ecosystem model under the conditions of $40\~100\%$ pollution load reductions from pollution sources. In study area, concentration of DIN and DIP were reduced to $59\%$ and $28\%$ in case of the $80\%$ reduction of the input loads from fresh water respectively. But pollution loads from sediment had hardly affected DIN and DIP concentration, The $95\%$ input load abatement is necessary to meet the DIN and DIP concentration of second grade of ocean water quality criteria.

Estimation of Nonpoint Pollutant Loads in the Hwanggujichoen Basin using SWMM (SWMM을 이용한 황구지천유역의 비점원오염부하량 평가)

  • Cho, Jae-Heon;Cho, Nam-Heung
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2003
  • Water pollution of Hwanggujicheon stream is severe because urban area of Suwon City is included in the basin. A countermeasure for water quality prevention of the stream is necessary. In this study, nonpoint pollutant load of BOD, SS, TN and TP are estimated using SWMM. The result indicates that BOD, SS, TN and TP loads during 3 months from July to September are 67.0%, 60.8%, 54.7% and 74.5% of the annual total load, respectively. We can see that most of nonpoint pollutant loads are generated in the rainy season. Annual nonpoint pollutant loads of BOD, SS, TN and TP in the Hwanggujicheon stream are 342 ton, 1,500 ton, 480 ton and 12.6 ton, respectively.

Waste Load Allocation of Hwanggujicheon Watershed Using Optimization Technique (최적화기법을 이용한 황구지천유역의 오염부하량 할당)

  • Cho, Jae Heon;Chung, Wook Jin;Lee, Jong Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.728-737
    • /
    • 2005
  • Water quality of the Hwanggujicheon is poor because of the rapid housing and development in the large area of the basin. Establishment of water quality management strategy, based on the pollution sources survey and pollutant loads estimation, has to be established for the preservation of the stream water quality of the region. In this study, waste load allocation model to achieve the water quality goal of the stream and the optimization of pollutant load reduction, was developed. Nonpoint pollutant loads calculated by runoff model in the previous study are utilized for pollutant loads estimation of the drainage areas in this study. From the application result of the allocation model, water quality goals of the Hwanggujicheon that can be achieved as a matter of fact are BOD 8 mg/L. To achieve these goals, 23% of effluent BOD loads have to be reduced in the basin.

Development and Application of Total Maximum Daily Loads Simulation System (소유역 오염총량모의시스템 개발 및 적용)

  • Kang, Moon-Seoung;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.389-392
    • /
    • 2002
  • The objectives of the paper are to develop the total maximum daily loads simulation system, TOLOS that is capable of estimation annual nonpoint source pollution from small watersheds, to monitor the hydrology and water quality of the Balhan HP#6 watershed, and to validate TOLOS with the field data.

  • PDF