• 제목/요약/키워드: pollution intensity

검색결과 153건 처리시간 0.026초

Analysis of the Correlation between Urban High Temperature Phenomenon and Air Pollution during Summer in Daegu

  • An, Eun-Ji;Kim, Hae-Dong
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, summer high temperature events caused by climate change and urban heat island phenomenon have become a serious social problem around the world. Urban areas have low albedo and huge heat storage, resulting in higher temperatures and longer lasting characteristics. To effectively consider the urban heat island measures, it is important to quantitatively grasp the impact of urban high temperatures on the society. Until now, the study of urban heat island phenomenon had been carried out focusing only on the effects of urban high temperature on human health (such as heat stroke and sleep disturbance). In this study, we focus on the effect of urban heat island phenomenon on air pollution. In particular, the relationship between high temperature phenomena in urban areas during summer and the concentration of photochemical oxidant is investigated. High concentrations of ozone during summer are confirmed to coincide with a day when the causative substances (NO2,VOCs) are high in urban areas during the early morning hours. Further, it is noted that the night urban heat island intensity is large.. Finally, although the concentration of other air pollutants has been decreasing in the long term, the concentration of photochemical oxidant gradually increases in Daegu.

가축 분뇨의 오염물질 농도 추정을 위한 영상처리 시스템 (An Image Processing System to Estimate Pollutant Concentration of Animal Wastes)

  • 이대원;김현태
    • 한국축산시설환경학회지
    • /
    • 제7권3호
    • /
    • pp.177-182
    • /
    • 2001
  • 본 연구는 가축분뇨의 오염물질의 농도와 영상처리를 통해 얻어 낸 영상정보값과의 상관관계를 구하기 위해 수행하였다. CCD-카메라와 개인용 컴퓨터를 사용하여 축 분뇨의 영상을 받은 후 각 활성 영역에서의 영상정보와 공정시험 법으로 구한 오염물질과의 관계를 회귀분석법을 이용하여 다음과 같은 결론을 얻을 수 있었다. 1. 영상정보 R값은 CDD값과 결정계수가 0.9213으로 가장 높았으며, G값은 BOD값과 결정계수가 0.9019로 가장 높게 나타났으며, B값의 경우 오염물질 농도와의 상관관계는 매우 적은 것을 알 수 있었다. 2. H값은 BOD와의 결정계수($R^2$)가 0.9496으로 매우 높게 나타났다. 이는 BOD추정에 이용가능할 것으로 판단되었다. 3. BOD농도 추종을 위해서 G값,GRAY, H값, S값, 1값 등이 결정계수가 0.8이상을 나타냈으며, 그 중 H값이 가장 높은 결정계수를 나타냈으며, 이러한 정보를 이용하여 농도 추정이 가능할 것으로 판단되었다. 4. COD농도 추정을 위해서 R값, GRAY값, S값이 0.8이상의 결정계수를 나타냈으며, 그 중에서 R값과의 관계가 가장 높게 나타났으며, 이를 이용하여 간접적으로 농도 추정이 가능할 것으로 판단되었다. 5. SS농도와 영상정보값과 결정계수가 모두 0.8이하로 나타났으며, $NH_4$-N와 $NO_3$-N의 농도와 영상정보와의 결정계수는 모두 0.2이하로 매우 낮게 나타났으며, 가시광선영역의 CCD-카메라를 이용한 농도추정은 불가능할 것으로 판단되었다.

  • PDF

베타선 흡수법을 이용하는 미세먼지 측정시스템을 위한 잡음제거 방법 (Noise Reduction Method for Particle Measurement System using Beta-ray Absorption Method)

  • 최훈;손상욱;배현덕
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1706-1712
    • /
    • 2012
  • The Beta-ray absorption method (BAM) gives a good solution for measuring the mass concentration of atmospheric particles(PM10 and PM2.5). To determine particular matters (PM) concentration, a ratio of the number of detected beta-ray intensity passing through the clean filter and the dust-sampled filter is used. These intensity data measured in air pollution monitoring such as PM10 and PM2.5 usually contained the additive noise(thermal noise, power supply noise and etc.). Therefore, the estimation performance of mass concentration can be deteriorated by these noises. In this paper, we present a new noise reduction method that is essentially required to develope an automatic continuous PM monitoring system using beta-ray absorption method. By combining the block data averaging technique and curve fitting, in the proposed method, the additive noise can be reduced in the measured data. To evaluate the performance of the proposed method, computer simulations were performed with computer generated signals as the input.

건축자재의 산화티타늄 코팅을 통한 휘발성 유기화합물 분해 (Destruction of Volatile Organic Compounds Using Photocatalyst-Coated Construction Materials)

  • 조완근;전희동
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.785-792
    • /
    • 2005
  • In order to reduce roadside and indoor air pollution for volatile organic compounds VOC), it may be necessary to apply photocatalyst-coated construction materials. This study evaluated the technical feasibility of the application of $TiO_2$ photocatalysis for the removal of VOC present in roadside or indoor air. The photocatalytic removal of five target VOC was investigated: benzene, toluene, ethyl benzene and o,m,p-xylenes. Variables tested for the current study included ultraviolet(UV) light intensity coating materials, relative humidity (RH), and input concentrations. Prior to performing the parameter tests, adsorption of VOC onto the current experiment was surveyed, and no adsorption was observed. Stronger UV intensity provided higher photocatalytic destruction(PCD) efficiency of the target compounds. For higher humidity, higher PCD efficiency was observed. The PCD efficiency depended on coating material. Contrary to certain previous findings, lower PCD efficiencies were observed for the experimental condition of higher input concentrations. The current findings suggested that the four parameters tested in the present study should be considered for the application of photocatalyst-coated construction materials in cleaning VOC of roadside or indoor air.

광합성을 이용한 바이오수소 생산 (Biohydrogen production using photosynthesis)

  • 심상준;김준표
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.478-481
    • /
    • 2006
  • Energy is vital to global prosperity, yet dependence on fossil fuels as our primary energy source contributes to global climate change environmental degradation, and health problems. Hydrogen $(H_2)$ offers tremendous potential as a clean renewable energy currency. Hydrogen has the highest gravimetric energy density of any known fuel and is compatible with electrochemical and combustion processes for energy conversion without producing carbon-based emission that contribute to environmental pollution and climate change. Numerous methodologies have been developed for effective hydrogen production. Among them, the biological hydrogen production has gained attention, because hydrogen can be produced by cellular metabolismunder the presence of water and sunlight. The green alga Chlamydomonas reinhardtii is capable of sustained $H_2$ photoproduction when grown under sulfur deprived condition. Under sulfur deprived conditions, PSII and photosynthetic $O_2$ evolution are inactivated, resulting in shift from aerobic to anaerobic condition in the culture. After anaerobiosis, sulfur deprived algal cells induce a reversible hydrogenase and start to evolve $H_2$ gas in the light. According to above principle, we investigated the effect of induction parameters such as cell age, cell density. light intensity, and sulfate concentration under sulfur deprived condition We also developed continuous hydrogen production system by sulfate re-addition under sulfur deprived condition.

  • PDF

A Satellite View of Urban Heat Island: Causative Factors and Scenario Analysis

  • Wong, Man Sing;Nichol, Janet;Lee, Kwon-Ho
    • 대한원격탐사학회지
    • /
    • 제26권6호
    • /
    • pp.617-627
    • /
    • 2010
  • Although many researches for heat island study have been developed, there is little attempt to link the findings to actual and hypothetical scenarios of urban developments which would help to mitigate the Urban Heat Island (UHI) in cities. The aim of this paper is to analyze the UHI at urban area with different geometries, land use, and environmental factors, and emphasis on the influence of different geometric and environmental parameters on ambient air temperature. In order to evaluate these effects, the parameters of (i) Air pollution (i.e. Aerosol Optical Thickness (AOT)), (ii) Green space Normalized Difference Vegetation Index (NDVI), (iii) Anthropogenic heat (AH) (iv) Building density (BD), (v) Building height (BH), and (vi) Air temperature (Ta) were mapped. The optimum operational scales between Heat Island Intensity (HII) and above parameters were evaluated by testing the strength of the correlations for every resolution. The best compromised scale for all parameters is 275m resolution. Thus, the measurements of these parameters contributing to heat island formation over the study areas of Hong Kong were established from mathematical relationships between them and in combination at 275m resolution. The mathematical models were then tabulated to show the impact of different percentages of parameters on HII. These tables are useful to predict the probable climatic implications of future planning decisions.

Overcoming Electrical Energy Efficiency Gap in Nepal's Residential Sector

  • Thapa, Shahadev;Kim, Yun Seon
    • Asia Pacific Journal of Business Review
    • /
    • 제3권1호
    • /
    • pp.19-38
    • /
    • 2018
  • The energy intensity of Nepal is economically not worthy, lacks eco-friendly and importantly not sustainable, and almost four times the average global energy intensity. Considerable efforts have been exercised to reduce the energy gap yet, it is still much to achieve. Nation priority on energy sector was envisaged with promulgation of investment friendly rules and law in hydropower and renewable technology even though, could not harness the sufficient energy. In amid of this acute energy crisis, the government launched the Nepal Energy Efficiency Programme (NEEP) with technical assistance from German International Cooperation (GIZ). Energy Efficiency (EE) practice is the most cost-effective method to reduce the supply and demand gap, reduce on greenhouse gases and pollution, and deter on import of petroleum products which finally improves on trade imbalance. This paper had proposed a framework of energy management team to promote energy efficient technologies in residential consumer. The energy management teams study the past records of energy use pattern of consumers and suggest appropriate technology for energy saving options. The paper provides some reviews of energy efficiency initiatives undertaken by the concern regulatory body which highlights the current status. The comprehensive knowledge acquired through exploratory research is implemented in this paper to identify the various barriers that domestic consumer is experiencing towards the active participation in energy efficiency program launched by the Government of Nepal.

식생이 적용된 비점오염 저감시설의 강우 특성에 따른 효율 분석 (Analysis of Non-point Pollution Source Removal Efficiencies according to Rainfall Characteristics in Low Impact Development Facilities with Vegetation)

  • 구수환;임지열;어성욱;길경익
    • 한국물환경학회지
    • /
    • 제33권3호
    • /
    • pp.247-255
    • /
    • 2017
  • This research was conducted to analyze removal efficiencies of non-point pollution source (NPS) in low impact development (LID) facilities with vegetation. In this research, removal efficiencies of NPS were calculated using rainfall monitoring data for 5 years in grassed swale (GS) and vegetative filter strip (VFS). TSS was greater than other pollutants, and it ranged 11.9 ~ 351.7 mg/L in GS and 12.8 ~ 350.7 mg/L in VFS. Outflow EMCs were reduced than inflow EMCs, overall removal efficiencies of NPS were 67 ~ 86% in GS and 63 ~ 91% in VFS. 50 % reduction efficiency of rainfall runoff was observed between inflow and outflow in each LID facility. TSS removal efficiency in GS and VFS was correlated with rainfall characteristics. The rainfall for TSS removal efficiency over 50% was determined about 31 mm, 34 mm and average rainfall intensity was 3.0 mm/hr, 3.9 mm/hr in GS and VFS. Therefore, GS and VFS were regarded effective LID facilities as removal of pollutants and rainfall runoff. Also, this research result can be used as an important data for management of NPS.

도암호 유역에서 비점오염물질의 유출부하 특성 (Characteristics of Runoff Load from Nonpoint Source Pollutants in the Lake Doam Watershed)

  • 곽성진;발데브;김기영;강필구;허우명
    • 생태와환경
    • /
    • 제51권1호
    • /
    • pp.135-147
    • /
    • 2018
  • In order to investigate the runoff characteristics of nonpoint source pollutants in the Lake Doam watershed, water quality and flow rate were monitored for 38-rainfall events from 2009 to 2016. The EMC values of SS, COD, TN and TP were in the range of 33~2,169, 3.5~56.9, 0.09~7.65 and $0.06{\sim}2.21mg\;L^{-1}$, respectively. As a result of analyzing the effect of rainfall factor on the nonpoint source pollutant load, EMCs of SS, COD and TP showed a statistically significant correlation with rainfall (RA) (p<0.01) and SS showed highly significant correlation with maximum rainfall intensity (MRI, R=0.48). The load ranges of SS, COD, TN and TP were 10.4~11,984.6, 1.1~724.4, 0.6~51.6 and $0.03{\sim}22.85ton\;event^{-1}$, respectively, showing large variation depending on the characteristics of rainfall events. The effect of rainfall on the load was analyzed. SS, COD and TP showed a positive correlation, but TN did not show any significant correlation. The annual load of SS was the highest with $88,645tons\;year^{-1}$ in 2011 when rainfall was the highest with 1,669 mm. The result of impact analysis of nonpoint source pollution reduction project and land-use change on runoff load showed that pollutant load significantly reduced from 2009 to 2014 but SS and TP loads were increased from 2014 to 2016 due to increase in construction area. Therefore, we suggested that nonpoint source pollution abatement plan should be continued to reduce the soil loss and pollutants during rainfall, and countermeasures to reduce nonpoint source pollution due to construction need to be established.

식생밭두렁과 실트펜스를 이용한 밭 비점오염 저감효과 평가 (Evaluation for Non-Point Sources Reduction Effect by Vegetated Ridge and Silt Fence)

  • 김동현;김상민
    • 한국농공학회논문집
    • /
    • 제57권5호
    • /
    • pp.129-137
    • /
    • 2015
  • The objective of this study was to test the non-point source pollution (NPS) control by the vegetated ridge and silt fence through field monitoring. The experiment plots were established with three sizes which are 5 m width by 22 m length with 8 %, 3 % slope and 15m width by 15 m length with 6 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Water quality samples were monitored during the heavy rainfall occurred. The amount of rainfall from 4 monitored events ranged from 27.6 mm to 130 mm. The runoff reduction rate could vary depending on slope, soil, crop growth condition, rainfall amount, rainfall intensity, antecedent moisture condition, and many other factors. The runoff from vegetated ridge and silt fence treatment plots was 24.05 % and -8.28 % lower than that from control plot, respectively. The monitoring results showed that the average pollution loads reduced by vegetated ridge compared to control were BOD 36.62~53.60 %, SS 40.41~73.71 %, COD 39.34~56.41 %, DOC 49.08~53.67 %, TN 26.74~67.23 %, and TP 52.72~91.80 %; by silt fence compared to control were SS 41.73 %, COD 1.93 %, and TN 2.38 %. The paired t-test result indicated that the vegetated ridge and silt fence were statistically significant effect in SS load reduction, with a 5 % significant level. Monitored results indicated that vegetated ridge and silt fence were both effective to reduce the pollutant from the field surface runoff.