• Title/Summary/Keyword: pollution intensity

Search Result 153, Processing Time 0.023 seconds

Wash-off Characteristics of NPS Pollutants from Forest Landuse (산림지역의 비점오염물질 유출특성 및 EMC 산정)

  • Choi, Ji-Yeon;Lee, So-Young;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.129-134
    • /
    • 2009
  • As a result of improved wastewater treatment facilities, the point source pollution emitted from human and municipal wastes is greatly decreasing. Conversely, the non-point source (NPS) pollution emanated from city streets, rural homes, suburban development, animal feedlot, croplands, and forestry is rapidly increasing. Practically, the main concern of the government is to control NPS pollutants by means of establishing a long term plan in order to protect the aqua-ecosystem. Studies have been conducted to assess the intensity of NPS from various landuses. In Korea, the data on NPS pollutant loadings are limited to few and broadly categorized landuses unlike in USA wherein specific landuses are available. This research aims to characterize the wash-off characteristics of NPS pollutants from forest landuse. Two sites were monitored during 15 storm events from 04/2008 to 10/2008. Mean $BOD_5$ EMCs are 1.13 mg/L and 0.91 mg/L for the two sites, respectively. The results of this research will be a helpful contribution for the assessment of total NPS pollutant loadings.

Development of Greenhouse Gas Estimation Method for a Local Government Level Using Traffic Demand Model

  • Maurillo, Pennie Rose Anne R.;Jung, Hyeon-Ji;Lee, Seon-Ha;Ha, Dong-Ik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.114-128
    • /
    • 2013
  • Greenhouse gas emissions have been an important issue in different countries because of their effects on global warming. The government has to organize greenhouse gas reduction measures suitable to regional characteristics by establishing annual implementation plans and comprehensive policies based on the UNFCCC. The transportation sector is one of the major contributors of air pollution; hence increasing need to estimate current and future traffic emissions precisely. Under these circumstances, a number of emission models have been developed recently. However, current methods of estimation cannot carry out effective analyses because it does not reflect vehicle movement characteristics. This study aims to present a new method for calculating road traffic emissions in Goyang city. A travel demand model is utilized to carry out GHG emission estimates according the traffic data (fleet composition, vehicle kilometers travelled, traffic intensity, road type, emission factors and speed). This study evaluates two approaches to estimate the road traffic emissions in Goyang City: Pollution-Emis and the Handbook of Emission Factors for Road Transport (HBEFA v.3.1) which is representative of the "average speed" and the "traffic situation" model types. The evaluation of results shows that the proposed emission estimation method may be a good practice if vigilant implementation of model inputs is observed.

Characteristics of Malodor Pollutants and Their Dispersion Measured in Several Industrial Source Regions in Yangsan (양산시 산업단지에서 측정한 악취물질의 농도 분포 특성 및 대기확산 모델링)

  • Song, Sang-Keun;Shon, Zang-Ho;Kim, Yoo-Keun;Park, Heung-Jai
    • Journal of Environmental Science International
    • /
    • v.18 no.10
    • /
    • pp.1103-1114
    • /
    • 2009
  • In this study, the environmental behavior of malodor pollutants (MPs: $H_2S$, $CH_3SH$, DMS, and DMDS) was investigated around areas influenced by strong anthropogenic processes based on observations and modeling study (a CALPUFF dispersion model). The MP emission concentrations were measured from 8 industrial source regions (tire plants (S1-S3), waste water disposal plant (S4), and oil refinery (S5) in an urban center area and paper mill/incineration plant (S6) and livestock feedlots (S7-S8) in Ungsang area) in Yangsan city during a fall period in 2008 (21 October 2008). Overall, the most MPs emitted from the urban center area were found to affect the malodor pollution in their downwind areas during early morning (06:00 LST) and nighttime (18:00 and 21:00 LST), compared with those in the Ungsang area. For malodor intensity, the most MPs in the urban center area (especially S1 and S2) were found to be a significant contributor, whereas $CH_3SH$ and $H_2S$ in the Ungsnag area (especially S6) were the dominant contributor. The model study showed agreement in the spatial distributions of simulated MPs with those of the observations. The largest impact of MPs in the urban center area on the malodor pollution in its residential areas occurred at S1, S2, and S3 sites during nighttime, while that of MPs in the Ungsang area occurred at S6 and S8 sites. This may be caused mainly by the high MP emissions and in part by wind conditions (prevailing northeasterly winds with low wind speeds of 2-3 m/s).

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

A METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF REGIONAL SCALE FOR NON-POINT SOURCE LOADS

  • Lee, Ju-Young;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.194-200
    • /
    • 2006
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program, projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in $kg/km^2/yr$ of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV. Especially, farmers in Cameron County consume a lot of fertilizer and pesticide to improve crop yield net profit. Then, this region can be created as larger nonpoint source area for nutrients and the intensity of runoff by excess irrigation water. And many sediment and used irrigation water with including high nutrients can be discharged into Rio Grade River.

A Study on the Characteristics of Delayed Hydride Cracking in Zr-2.5Nb Pressure Tube with the Heating-up and Heat-treatment (열처리 및 가열방식에 따른 Zr-2.5Nb 압력관의 수소지연균열 특성에 관한 연구)

  • Na, Eun-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.69-73
    • /
    • 2009
  • The objective of this study was to obtain a better understanding of the delayed hydride cracking (DHC) of Zr-2.5Nb alloy. The DHC model has some defects: first, it cannot explain why the DHC velocity (DHCV) becomes constant regardless of an applied stress intensity factor, even though the stress gradient is affected by the applied stress intensity factor at the notch tip. Second, it cannot explain why the DHCV has a strong dependence on the method of approaching the test temperature by a cool-down or a heating-up, even under the same stress gradient, and third, it cannot predict any hydride size effect on the DHC velocity. The DHC tests were conducted on Zr-2.5Nb compact tension specimens with the test temperatures reached by a heating-up method and a cool-down method. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by being furnace-cooled, water-quenched, and liquid nitrogen-quenched. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates. This different DHC behavior of the Zr-2.5Nb tube with the cooling rate after a homogenization treatment is due to the precipitation of the $\gamma$-hydrides only in the water-quenched Zr-2.5Nb tube. This experiment will provide supporting evidence that the terminal solid solubility of a dissolution (TSSD) of $\gamma$-hydrides is higher than that of $\delta$-hydrides.

Vibrational energy flow in steel box girders: Dominant modes and components, and effective vibration reduction measures

  • Derui Kong;Xun Zhang;Cong Li;Keer Cui
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.347-362
    • /
    • 2024
  • Controlling vibrations and noise in steel box girders is important for reducing noise pollution and avoiding discomfort to residents of dwellings along bridges. The fundamental approach to solving this problem involves first identifying the main path of transmission of the vibration energy and then cutting it off by using targeted measures. However, this requires an investigation of the characteristics of flow of vibration energy in the steel box girder, whereas most studies in the area have focused on analyzing its single-point frequency response and overall vibrations. To solve this problem, this study examines the transmission of vibrations through the segments of a steel box girder when it is subjected to harmonic loads through structural intensity analysis based on standard finite element software and a post-processing code created by the authors. We identified several frequencies that dominated the vibrations of the steel box girder as well as the factors that influenced their emergence. We also assessed the contributions of a variety of vibrational waves to power flow, and the results showed that bending waves were dominant in the top plate and in-plane waves in the vertical plate of the girder. Finally, we analyzed the effects of commonly used stiffened structures and steel-concrete composite structures on the flow of vibration energy in the girder, and verified their positive impacts on energy regionalization. In addition to providing an efficient tool for the relevant analyses, the work here informs research on optimizing steel box girders to reduce vibrations and noise in them.

Evaluation Method of Cosmetics for the Effect of Fine Dust Adhesion Prevention Using Floating Chamber (부유챔버를 이용한 화장품의 미세먼지 부착방지 효과 평가법)

  • Kim, Woncheol;Kim, Han Jo;Boo, Yong Chool;Koh, Jae Sook;Baek, Ji Hwoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.319-327
    • /
    • 2020
  • Particulate matters (PM) are small particulate pollution that decrease the function of skin barrier, which causes inflammatory skin diseases and extrinsic aging. In this study, we evaluated the effect of preventing the adherence of PMs from several cosmetic products applied to human skin using iron oxide black. The PM floating chamber consists of skin exposure area, PM inlet, floating power device, and an outlet so that PM can be naturally attached to the skin while floating in the chamber. The change in skin brightness according to the floating concentration of alternative fine dust was checked to confirm the optimal floating concentration conditions. The intensity difference (before-after intensity, Δ) before and after adhesion of iron oxide black was proportional to the amount of PM adhered. The anti-adherence effect of iron oxide black on five cosmetic products were evaluated through 20 each subjects by comparing the amount of iron oxide black adhered on the control and treatment. The difference in brightness before and after the iron oxide black attached to the skin was calculated and compared with the control group(p < 0.05). When over 150 mg of iron oxide black was adhered on the skin, the interference of intensity was low and clearly showed the skin adhered pattern. According to the application of the five cosmetics, the intensity difference was significantly lower than the control group. This means that depending on the product, it prevented the attachment of iron oxide black. This study is a safe and useful method to confirm the prevention of PM skin adherence. In conclusion, cosmetics can prevent the adherence of PM on the skin according to the formulation or ingredients characteristics.

Land Use Regression Model for Assessing Exposure and Impacts of Air Pollutants in School Children (Land Use Regression 모델을 이용한 수도권 초등학교 대기오염 노출 분석)

  • Lee, Ji-Young;Leem, Jong-Han;Kim, Hwan-Cheol;Hwang, Seung-Sik;Jung, Dal-Young;Park, Myung-Sook;Kim, Jung-Ae;Lee, Je-Joon;Park, No-Wook;Kang, Sung-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.571-580
    • /
    • 2012
  • Epidemiologic studies of air pollution need accurate exposure assessments at unmonitored locations. A land use regression (LUR) model has been used successfully for predicting traffic-related pollutants, although its application has been limited to Europe, North America, and a few Asian region. Therefore, we modeled traffic-related pollutants by LUR then examined whether LUR models could be constructed using a regulatory monitoring network in Metropolitan area in Korea. We used the annual-mean nitrogen dioxide ($NO_2$) in 2010 in the study area. Geographic variables that are considered to predict traffic-related pollutants were classified into four groups: road type, traffic intensity, land use, and elevation. Using geographical variables, we then constructed a model to predict the monitored levels of $NO_2$. The mean concentration of $NO_2$ was 30.71 ppb (standard deviation of 5.95) respectively. The final regression model for the $NO_2$ concentration included five independent variables. The LUR models resulted in $R^2$ of 0.59. The mean concentration of $NO_2$ of elementary schools was 34.04 ppb (standard deviation of 5.22) respectively. The present study showed that even if we used regulatory monitoring air quality data, we could estimate $NO_2$ moderately well. These analyses confirm the validity of land use regression modeling to assign exposures in epidemiological studies, and these models may be useful tools for assessing health effects of long-term exposure to traffic related pollution.

Evaluation of Air Pollution Effects in Seoul City on Forest Soil at Mt. Namsan by Assay of Denitrifying and Sulfur-Reducing Bacteria (탈질균(脫窒菌) 및 황산환원균(黃酸還元菌) 정량(定量)을 통(通)한 서울의 대기오염(大氣汚染)이 남산(南山)의 토양(土壤)에 미치는 영향(影響) 평가(評價))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.98-104
    • /
    • 1997
  • Soil pollution intensity at Mt. Namsan in Seoul city which was expected to show significant soil contamination due to long-term air pollution was evaluated by comparing soil chemical properties at Mt. Kyebangsan in Hongcheon area as a control, and the bacteria participating in nitrogen or sulfur mineralization were assayed simultaneously in order to evaluate the validity of N and/or S mineralization bacteria as an index of soil contamination. The soil of Mt. Namsan showed 10 times higher concentration of hydrogen ion compared to that of Mt. Kyebangsan, which indicated that the soil had relatively been acidified seriously. Especially, large amount of canons were thought to be leached out from the soil, while the amount of extractable Al was getting larger and larger, which result in serious problems in soil ecosystem of the mountain. I could infer from soil chemical properties of the four study sites that the major reason of soil acidification was SOx deposition. However, the sulfur-reducing bacteria were not significantly different between the two regions, which indicated that the microbial dynamics of the soil ecosystem was not controlled by simple factor, but by multiple factors. By the way, the dynamics of bacteria participating in denitrification process was different between the two regions, which was more active at Mt. Kyebangsan than at Mt. Namsan. Thus, the microbial assay for nitrogen mineralization is desirable to be examined as a tool for evaluating soil health or microbial activity in soil ecosystem.

  • PDF