• 제목/요약/키워드: pollutant loading

검색결과 252건 처리시간 0.018초

국내 고속도로 휴게소지역 비점오염원 유출특성 분석 (Evaluation of Pollutants Concentrations and Runoff Characteristics in Highway Rest Area)

  • 김정현;강희만;고석오
    • 한국도로학회논문집
    • /
    • 제12권4호
    • /
    • pp.131-137
    • /
    • 2010
  • 최근 비점오염원에 대한 관심이 높아지면서, 환경부 및 유관단체를 중심으로 노면 유출수를 포함한 비점오염원(Non point source)에 대한 현황 조사 및 처리 방법에 대한 관심이 증가하고 있다. 고속도로 휴게소 주차장 노면 유출수는 고속도로 본선 노면 유출수보다 유해물질 오염도가 높을 것으로 예상되어, 본 연구는 이 지역의 노면 유출수 오염도 조사를 통해 유출수 평가 및 노면 유출수 저감시설의 저감효과를 분석하여 휴게소 노면유출수 관리방안을 수립하는 것을 목적으로 하고 있다. 휴게소지점에 대한 강우 유출수 분석 결과 포장지역의 특성인 초기강우현상을 볼 수 있었으며, 강우초기에 입자상물질은 중금속과 결합하여 다량 유출되는 특성을 나타내었다. 휴게소 지점의 강우유출수에 대한 오염물질별 EMC에 대한 95% 확신범위로는 TSS 128.2-273.4mg/L, COD 145.4-310.1mg/L, TN 6.1-11mg/L, TP 1.9-2.9mg/L의 범위로 분석되어 고속도로에서 유출되는 강우유출수와 비슷한 수준으로 유출되는 것으로 분석되었으나, 중금속의 경우 고속도로에 비해 고농도의 중금속이 유출되는 것으로 나타났는데, 이것은 차량 정차시 브레이크 패드나 타이어의 마모등에 의한 것으로 판단된다. 휴게소지점에 대한 면적당 발생되는 부하량 통계분석결과, TSS의 평균 부하량은 $1411.6mg/m^2$로 산정되었으며, COD $709.7mg/m^2$, TN $44.0mg/m^2$, TP $10.4mg/m^2$로 산정되었다. 중금속의 경우 Total Cu $12927.4{\mu}g/m^2$, Total Fe $32074.4{\mu}g/m^2$, Total Pb $40371{\mu}g/m^2$, Total Ni $10679.2{\mu}g/m^2$로 산정되었다.

지속가능한 도시개발을 위한 LID평가모델(LIDMOD)개발과 수질오염총량제에 대한 적용성 평가 (LIDMOD Development for Evaluating Low Impact Development and Its Applicability to Total Maximum Daily Loads)

  • 전지홍;최동혁;김태동
    • 한국물환경학회지
    • /
    • 제25권1호
    • /
    • pp.58-68
    • /
    • 2009
  • Low impact development (LID) technique is relatively new concept to reduce surface runoff and pollutant loading from land cover by attempting to match predevelopment condition with various integrated management practices (IMPs). In this study, computational model for designing and evaluating LID, named LIDMOD, was developed based on SCS-CN method and applied at Andong bus terminal to evaluate LID applicapability and design retention/detention area for volume or peak flow control. LIDMOD simulated with 21 years simulation period that yearly surface runoff by post-development without LID was significantly higher than that with LID showing about 2.8 times and LID could reduce efficiently yearly surface runoff with 75% reduction of increased runoff by conventional post development. LIDMOD designed detention area for volume/peak flow control with 20.2% of total area by hybrid design. LID can also efficiently reduce pollutant load from land cover. Pollutant loads from post-development without LID was much higher than those from pre-development with showing 37 times for BOD, 2 times for TN, and 9 times for TP. Pollutant loads from post-development with LID represented about 57% of those without LID. Increasing groundwater recharge reducing cooling and heating fee, creating green refuge at building area can be considered as additional benefits of LID. At the point of reducing runoff and pollutant load, LID might be important technique for Korean TMDL and LIDMOD can be useful tool to calculate unit load for the case of LID application.

수질오염총량관리 대상물질 확대를 위한 한강수계 하천수질 경향 및 수질특성 분석 (Analysis of Water Qulity changes & Characterization at the Watershed in Han River Basin for Target indicator in TMDLs)

  • 최옥연;김홍태;서희승;한인섭
    • 한국물환경학회지
    • /
    • 제33권1호
    • /
    • pp.15-33
    • /
    • 2017
  • Based on the existing pollutant emissin standards which are armed at the pollutant concentration of each pollution source, government formulated and implemented new management system of total water pollutant emission. By virtue of this new management system, pollution loading amount of individual watershed could be controlled, which achieved the requirement of water quality management such as TP and BOD. In initiate stage of it's implement, BOD was selected as object of water quality management, While it's necessary to consider the continuity of water quality data and established pollutant management laws and policy. During the ongoing management, TP management was added into the system while simply BOD management was not enough. However, the frequency of algae bloom in Han-river showed a trend of same, even though TP was treated as additional control target. Therefore, this paper will analyze different water quality parameters and characteristic of water quality, so that this study can be provide as reference for watershed management of water quality, by which the applicable management period and target pollutant can be selected in the future.

HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석 (Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model)

  • 김소래;김상민
    • 한국농공학회논문집
    • /
    • 제62권1호
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.

강우시 철로 역사에서 발생하는 비점오염물질의 유출 경향 및 특성 (Characteristics of Washed-off Pollutants from Railway Station During Storms)

  • 김이형;어성욱;이선하
    • 한국철도학회논문집
    • /
    • 제8권1호
    • /
    • pp.15-20
    • /
    • 2005
  • The ministry of Environment, Korea, are designing the TMDL(Total Maximum daily Load) program far 4 major large rivers to improve water quality from possible pollutants. It can be successfully performed as controling of nonpoint pollutants from watershed area. Railway stations are stormwater intensive land use because of high imperviousness and high pollutant mass emissions from various activities. Especially the metal pollutants from the railway station were recognized as an important pollutants because of its toxicities. In order to characterize the washed-off pollutants. the monitoring were performed on a railway station during storms. Pollutant concentrations are exponentially decreasing during the storm duration. The 95% confidence interval of pollutant concentrations in an hour storm duration ranges from 61.6 to 115.4mg/L for TSS(mean=88.50mg/L),103.8-244.1mg/L for COD(mean=174 mg/L) and 7.68-17.32mg/L for Oil & Grease(mean=12.5mg/L). The ranges of metals were 39.2-84.0 $\mu\textrm{g}$/L for total Cu(mean=61.6$\mu\textrm{g}$/L), 14.0-25.8$\mu\textrm{g}$/L for total Pb(mean=19.9$\mu\textrm{g}$/L) and 182.2-376.l $\mu\textrm{g}$/L for total Zn(mean=279.2$\mu\textrm{g}$/L). The first flush criteria for best management practices can be suggested to 50% pollutant mass emissions during 30% of the total flow.

포장지역내 강우유출수의 EMCs 및 부하량 산정 (Determination of Pollutant EMCs and Loadings of Runoff in Paved Areas)

  • 길경익;위승경;박무종
    • 한국방재학회 논문집
    • /
    • 제8권4호
    • /
    • pp.119-122
    • /
    • 2008
  • 도로나 교량과 같은 불투수율이 높은 포장지역의 경우 차량의 통행으로 건기기간 동안 축적되어 있던 다양한 비점오염원이 강우 지속시간 동안 인근 하천에 유입되어 심각한 영향을 미치고 있다. 따라서 본 연구는 2년 동안 모니터링을 실시하여 각 오염물질별 유량가중평균농도 및 오염 부하량을 산정하였다. 모니터링 결과 TSS EMC는 11.60$\sim$230.90 mg/L의 범위, BOD EMC는 4.58$\sim$31.90 mg/L의 범위, TN과 TP의 EMC는 각각 1.86$\sim$9.20 mg/L, 0.14$\sim$1.55 mg/L의 범위로 산정되었다. 또한 오염 부하량은 TSS는 0.78$\sim$18.01 kg/day의 범위, BOD는 0.47$\sim$1.17 kg/day의 범위로 산정되었고, Pb은 0.00$\sim$0.01 kg/day의 범위, Zn은 0.01$\sim$0.06 kg/day의 범위로 산정되었다.

합류식 하수관거 월류수 저장 시설에 대한 효과 - 강우시 합류식 하수관거에서의 오염물질 유출특성 분석 (Effect for CSOs Storage Construction - Analysis of Storm Water Run-off Characteristics in combined sewer system)

  • 박진규;이남훈;김해룡;이웅;이채영
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.949-957
    • /
    • 2011
  • This aim of study was to investigate the characteristics of discharge of pollutants as well as the correlation between flow rate and water quality constituents in a combined sewer system according to the characteristics of rainfall. For the loading rates for each pollutant, the median concentrations of all pollutants except T-N was increased when a CSO took place. The loading rates of BOD, COD, SS, T-N, T-P, Cu and Zn at the CSOs were 328-1255, 25-129, 83-2009, 4-12, 14-51, 5-11 and 5-13 times higher than the DWF (Dry Whether Flow), respectively. Especially, SS loading rate was found to be highest in all pollutants. On the other hand, the range of the first flush coefficient, b for water quality constituents such as BOD, COD, SS, T-N, T-P, Cu and Zn were 0.537-0.878, 0.589-0.888, 0.516-1.062, 0.852-1.031, 0.649-0.954, 0.975-1.015 and 0.900-1.114, respectively. In term of correlation between flow rate and pollutant concentrations, SS concentration was highly correlated to flow rate. However, there was an inverse correlation between EC (Electrical Conductivity) and flow rate because of the high dilution of flow rate. In case of correlation between pollutants, there was a high correlation between SS and T-P.

대청호 정체수역의 수질예측과 관리 (Management of Water Quality of Embayments in Daechong Reservoir)

  • 이종호
    • 환경영향평가
    • /
    • 제3권2호
    • /
    • pp.33-45
    • /
    • 1994
  • Water quality of Chongju and Daejeon Water Intake Tower Region, embayments in Daechong Reservoir was found to be worse than that of main lake after analysis of water which were sampled during April, July, October in 1993. Concentration of COD and SS at those two water intake tower sites were 2.8-5.6 mg/l and 2.2-3.2 mg/l, higher than that of main lake. T-N concentration of those two sites was 1.1-1.9 mg/l similar to that of main lake, and T-P concentration of those two sites was 0.14-0.18 mg/l, higher than that of main lake. This study used water quality model of embayment which can analyse pollutant loads from stream and surrounding land use, advection, decay, and diffusion transport between embayment and main lake. The model can predict water quality of embayment according to the change of pollutant load, water elevation of embayment, quantity of water intake in order to suggest water quality management. This study suggests embayment water quality management alternatives, 1) construction of waste water treatment facilities at embayment and main lake for the decrease of pollutant loading, 2) water intake at main lake less polluted or eutrophicated than embayment, and 3) outflow elevation selection for polluted hypolimnion water outflow during stratification.

  • PDF

Bacterial Dynamics of Biofilm Development During Toluene Degradation by Burkholderia vietnamiensis G4 in a Gas Phase Membrane Bioreactor

  • Kumar, Amit;Dewulf, Jo;Wiele, Tom Van De;Langenhove, Herman Van
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.1028-1033
    • /
    • 2009
  • In this study, the dynamics of living cells (LC) and dead cells (DC) in a laboratory-scale biofilm membrane bioreactor for waste gas treatment was examined. Toluene was used as a model pollutant. The bacterial cells were enumerated as fluoromicroscopic counts during a 140 operating day period using BacLight nucleic acid staining in combination with epifluorescence and confocal laser scanning microscopy (CSLM). Overall, five different phases could be distinguished during the biofilm development: (A) cell attachment, (B) pollutant limitation, (C) biofilm establishment and colonization, (D) colonized biofilm, and (E) biofilm erosion. The bioreactor was operated under different conditions by applying different pollutant concentrations. An optimum toluene removal of 89% was observed at a loading rate of 14.4 kg $m^{-3}d^{-1}$. A direct correlation between the biodegradation rate of the reactor and the dynamics of biofilm development could be demonstrated. This study shows the first description of biofilm development during gaseous toluene degradation in MBR.

낙동강 유역의 수질관리를 위한 유역모델링 적용 연구 (Watershed Modeling Application for Receiving Water Quality Management in Nakdong River Basin)

  • 장재호;안종호
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.409-417
    • /
    • 2012
  • SWAT model was applied for the Nakdong River Basin to characterize water quality variability and assess the feasibility of using the load duration curve to water quality management. The basin was divided into 67 sub-basins considering various watershed environment, and rainfall runoff and pollutant loading were simulated based on 6 year measurements of meteo-hydrological data, discharge data of treatment plants, and water quality data (SS, T-N and T-P). The results demonstrate that non-point source loads during wet season increase by 80 ~ 95% of total loads. Although the rate of water flow governs the amount of SS that is transported to the main streams, nutrient concentrations are highly elevated during dry season by being concentrated. This phenomenon is more pronounced in the lower basin, receiving large amounts of urban point source discharges such as treated sewages. Also, the load duration curves (LDC) demonstrate dominant source problems based on the load exceedances, showing that SS concentrations are associated with the rainy season and nutrients, such as T-P, may be more concentrated at low flow and more diluted at higher flow. Overall, the LDC method could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.