• 제목/요약/키워드: pollutant loading

검색결과 252건 처리시간 0.019초

우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과 (Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System)

  • 이광춘;최봉철;임봉수
    • 상하수도학회지
    • /
    • 제18권4호
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

금강수계 남대천유역의 수질변화와 오염부하량 (Pollutant Loading and Changes of Water Quality at the Namdae-cheon Watershed in Keum river Districts)

  • 최창현;한강완;조재영;전재철;김성조
    • 한국환경농학회지
    • /
    • 제19권1호
    • /
    • pp.26-31
    • /
    • 2000
  • 금강수계 상류에 위치하고 있는 전라북도 무주군 남대천 유역을 대상으로 1995년 7월부터 1998년 4월까지 32개월 동안 4개 지점의 수질시료에 대한 질적변화를 주기적으 로 조사하였다. 또한 남대천 유역의 인구, 가축 그리고 토지이용에 따른 원단위 오염부 하량과 실측 오염부하량을 비교 분석하였다. 수계 환경에 영향을 미칠 수 있는 영양물질을 대상으로 시기별 함량 변화를 조사한 결과, 전질소는 $1.8{\sim}5.8\;mg/L$의 범위로 평균 3.8 mg/L, 전인산은 $0.01{\sim}0.08\;mg/L$의 범위로 평균 0.05 mg/L를 나타내었다. 남대천 유역의 원단위 오염부하량은 질소 550.4 ton/yr, 인산 79.1 ton/yr로 나타났는데, 질소원의 경우 가축사육에 의한 부하량이 358.1 ton/yr로 전체의 65.1 %를, 토지이용에 의한 부하량이 129.3 ton/yr로 전체의 23.5 %를, 인구에 의한 부하량이 63.0 ton/yr로 전체의 11.4 %를 차지하는 것으로 조사되었다. 인산원의 오염부하량은 가축 사육에 의한 오염부하량이 60.6 ton/yr로 전체의 76.6 %를, 인구에 의한 부하량이 13.3 ton/yr 로 전체의 16.8 %를, 토지이용에 의한 부하량이 5.2 ton/yr로 전체의 6.6 %를 차지하였다. 각 조사지점별 질소와 인산의 실측 오염부하량은 질소 452.5 ton/yr, 인산 5.4 ton/yr로 나타 났는데 원단위 오염부하량과 비교시 인산의 경우 상당한 차이를 나타내고 있었다.

  • PDF

하수슬러지 처리기술 동향 및 최적화 처리방안 (Treatment, Disposal and Beneficial Use Option for Sewage Sludge)

  • 최용수
    • 수도
    • /
    • 제24권5호통권86호
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF

광산배수 오염평가 기준도출에 관한 연구

  • 지상우;고주인;강희태;김재욱;김선준
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.382-385
    • /
    • 2003
  • QAMDI(Quantified Acid Mine Drainage Index) was developed for more synthesised, qualified and quantified assessment index which can be applied to both coal and metal mine drainage. QAMDI is calculated using three parameter groups i.e. acidity, sulfate contents and toxic metal contents. Since QAMDI expressed in terms of concentration. It reveals the different status of each mine drainage more clearly. QAMDI can be converted to the quantity of pollutant loading by being multiplied by the water flux.

  • PDF

駕莫灣 流域의 汚染負荷 特性에 관한 硏究 (A Study on the Characteristics of Pollutant Loads in Kamak Bay Watershed)

  • 이대인;조현서
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.945-954
    • /
    • 2002
  • The objective okgf this study is understanding and evaluation of temporal and spatial variation of pollutant loads by input sources for water quality management in Kamak Bay. Flow rate of rivers and ditches ranges from about $2,592-63,072m^3/d$ in October to $864-55,296m^3/d$ in January. In particular, the R2 predominated flow rate among input sources. Total COD, BOD, DIN and DIP loadings in January were about 896kg/d, 718kg/d, 2,152kg/d, and 154kg/d, respectively, which exceeded those of October. Lower POC/TOC levels are estimated in R2, and also in October. Temporal variation of pollutant loads were closely related to the human activity. Total discharging loadings of BOD, TN and TP by unit loading estimation were 4,993.0kg/d, 2,558.7kg/d, and 289.2kg/d, respectively, and were mainly affected by the population. Runoff ratio of BOD was about 0.14 in January Mean $NH_4^+_-N$ and $PO_4\;^{3-}-P$ loadings from sediment were 16.23mg/$m^2$/d and 7.26mg/$m^2$/d, respectively. For the improvement of water quality in this area, not only pollutant loads of rivers and ditches but also benthic flux from sediment should be reduced within the limits of the environmental capacity.

Characteristics of Pollutant Loads and Water Quality in Kwangyang Bay, Korea

  • Lee Dae-In;Park Chung-Kil;Cho Hyeon-Seo
    • Fisheries and Aquatic Sciences
    • /
    • 제6권3호
    • /
    • pp.149-154
    • /
    • 2003
  • The characteristics of pollutant loads from the various sources and seawater quality in Kwangyang Bay were evaluated. Total flow rate was estimated to be $10,868,066.8 m^3/day$ with a flow rate of R2l (the Seomjin River) as the highest one. Total COD, TN and TP loads of the input rivers and the ditches were about 27,591.8, 25,029.6 and 586.4 kg/day, respectively. Wastewater discharging loads was the greatest contributors to pollutant loads in the inner part of Kwangyang Bay. COD values in the inner part of the bay was over 3.0 mg/L, which exceeded the seawater quality criteria III of Korea. The average values of DIN and DIP were 8.62 ${\mu}gN/L\;and\;1.26\;{\mu}gP/L$, respectively. The limiting factor for algal growth was DIN. In he total discharging loads of the watershed from unit loading estimations, BOD, TN and TP were 9,132.3, 2,727.2 and 304.2 kg/day, respectively. In addition, municipal sewage by the population as pollution sources and the city of Kwangyang as administrative district had the highest loads. For a appropriate water quality recovery of Kwangyang Bay, it is suggested that it is essential to estimate reduction rate of total pollutant loads by water quality modeling.

강우시 소옥천에서의 비점오염원 유출 특성 (Pollutant Characteristics of Nonpoint Source Runoff in Okcheon Stream)

  • 오영택;박제철;김동섭;류재근
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.657-663
    • /
    • 2004
  • The aims of this study are the characterization of runoff from nonpoint source, the analysis of the pollutant loads and an establishment of a management plan for nonpoint source of Okcheon. For this purpose the basin of the stream So-okcheon was selected to the investigated. During the period from May 29 to July 21 in 2003, the water automatic sampler system has been installed in Okkagkyo and parameters such as SS, COD, TOC, TP and TN were analyzed. The pollutants of nonpoint source seem to be washed out along the stream water in the beginning of rainfall, remain in water and cause the stream pollution. The runoffs during heavy rainfall, especially, much higher concentration of SS than those during dry period. With respect to the annual loading of pollutants of the nonpoint source, the COD was 124 ton/yr, TOC 396 ton/yr, TN 1,429 ton/yr and TP 4.2 ton/yr in the year 2002. With respect to the pollutants loading of the nonpoint source, the COD was 375 ton/yr(95% of the total COD loading of 394 ton/yr), TOC 844 ton/yr(96% of the tatal TOC loading of 876 ton/yr), TN 1,985 ton/yr(96% of the total TN loading of 2,062 ton/yr) and TP 37.1 ton/yr(92% of the total TP loading of 40.3 ton/yr) in the year 2003.

농촌유역 하천의 수질예측을 위한 SWAT모형과 WASP모형의 연계운영 (Conjunctive Use of SWAT and WASP Models for the Water Quality Prediction in a Rural Watershed)

  • 권명준;권순국;홍성구
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.116-125
    • /
    • 2003
  • Predictions of stream water quality require both estimation of pollutant loading from different sources and simulation of water quality processes in the stream. Nonpoint source pollution models are often employed for estimating pollutant loading in rural watersheds. In this study, a conjunctive application of SWAT model and WASP model was made and evaluated for its applicability based on the simulation results. Runoff and nutrient loading obtained from the SWAT model were used for generating input data for WASP model. The results showed that the simulated runoff was in good agreement with the observed data and indicated reasonable applicability. Loading for the water quality parameters predicted by WASP model also showed a reasonable agreement with the observed data. It is expected that stream water quality could be predicted by the coupled application of the two models, SWAT and WASP, in rural watersheds.

BASINS/WinHSPF를 이용한 남한강 상류 유역의 비점오염원 저감효율평가 (A Study on BASINS/WinHSPF for Evaluation of Non-point Source Reduction Efficiency in the Upstream of Nam-Han River Watershed)

  • 윤춘경;신아현;정광욱;장재호
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.951-960
    • /
    • 2007
  • Window interface to Hydrological Simulation Program-FORTRAN (WinHSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Nam-Han river watershed to examine its applicability for loading estimates in watershed scale and to evaluate non-point source control scenarios using BMPRAC in WinHSPF. The WinHSPF model was calibrated and verified for water flow using Ministry of Construction and Transportation (MOCT, 3 stations, 2003~2005) and water qualities using Ministry of Environment (MOE, 5 station, 2000~2006). Water flow and water quality simulation results were also satisfactory over the total simulation period. But outliers were occurred in the time series data of TN and TP at some regions and periods. Therefore, it required more profit calibration process for more various parameters. As a result, all the study was performed within the expectation considering the complexity of the watershed, pollutant sources and land uses intermixed in the watershed. The estimated pollutant load for annual average about $BOD_5$, T-N and T-P respectively. Nonpoint source loading had a great portion of total pollutant loading, about 86.5~95.2%. In WinHSPF, BMPRAC was applied to evaluate non-point source control scenarios (constructed wetland, wet detention ponds and infiltration basins). All the scenarios showed efficiency of non-point source removal. Overall, the HSPF model is adequate for simulating watersheds characteristics, and its application is recommended for watershed management and evaluation of best management practices.