• Title/Summary/Keyword: pollutant loading

Search Result 252, Processing Time 0.023 seconds

Evaluation of Basic Unit for Non-point Pollutants in Runoff of West Coast Highway - Maesong Area (서해안 고속도로 매송지역 비점오염원 원단위 산정 연구)

  • Park, Seyong;Mo, Kyung;Kim, Leehyung;Kang, Heeman;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, evaluation of basic unit of non-point pollutant, which is fundamental evaluation of non-point loading, was conducted using both road point and angle of intersection point in Maesong area, West coast highway by utilizing Event Mean Concentrations(EMC). Concentration of pollutants except heavy metals at these two points rapidly decreased in 30 minutes after start of runoff. According to the results of EMC, for both sampling points, it was determined that the concentrations of TSS(Total Suspended Solid), $BOD_5$(Biological Oxygen Demand), and DOC(Dissolved Organic Carbon) were higher than those of wastewater effluent standard in Korea, however, the concentrations of T-N(Total Nitrogen) and T-P(Total Phosphorus) were lower than those of the standard. In terms of heavy metals, Fe, Pb, and Zn showed higher concentrations than others. When compared with the units established by the Ministry of Environment in Korea, the basic units of $BOD_5$ and T-N in this study were lower. On the other hand, when compared with foreign units, Cu, Pb, and Zn showed approximately 10 times higher concentrations. It was estimated that a long term monitoring should be conducted for obtaining additional data and more reliable basic units for the non-point pollutnats based on the results from this study.

Characteristics of Wash-off Metal Pollutants from Highway Toll-Gate Area (고속도로 영업소지역의 강우유출수내 중금속 유출 특성)

  • Lee, Soyoung;Lee, Eunju;Kim, Chulmin;Son, Hyungun;Maniquiz, Marla C.;Son, Youngkyu;Kang, Heeman;Kim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.945-950
    • /
    • 2007
  • The stormwater runoff from paved area are highly polluted because of particulate materials as well as metals from various vehicular activities. The Division of Road Maintenance in Ministry of Construction and Transportation was recently developed the Guidelines of Environment-kindly Road Maintenance. It is actually requiring the BMP construction to control the nonpoint source pollution as based on the TMDL program. This research is carried out in order to define the characteristics of stormwater runoff from the toll-gate of highways since 2006, which is actually one of the main pollutant sources of paved areas. This monitoring is the first phase work for establishing the treatment facilities in the toll-gates. The one of the main characteristics from toll-gate runoff is the first flush phenomenon containing lots of sediments and metal compounds at the beginning of a storm event. Usually it is used to determine the size of treatment facilities and to calculate the reduced pollutant mass in the facility. The research results shows that the mean EMC vaules for heavy metals are determined to $274.3{\mu}g/L$ for Cd, $1,273.4{\mu}g/L$ for Cr, $1,822.0{\mu}g/L$ for Cu, $6,504.9{\mu}g/L$ for Fe, $14,930.3{\mu}g/L$ for Pb, and $714.1{\mu}g/L$ for Zn. Also the metal mass loadings from the toll-gates are calculated using EMC, watershed area and storm duration.

Research on improvement of water purification efficiency by porous concrete using bio-film (생물막을 이용한 다공성 콘크리트의 수질정화 효율 개선에 대한 연구)

  • Kim, Tae-Hoon;Li, Feng-Qi;Ahn, Tae-Woong;Choi, I-Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.815-821
    • /
    • 2011
  • This study aims to estimate the biological decomposition capacity of MPC(Microorganism Porous-Concrete). MPC has specific surface area formed by inside pores, and bio compound was added to those pores to reduce pollutants loading. To evaluate the water purification capacity of MPC, we carried out the comparative studies using different media types [GPC(General Porous-concrete), CPC(Compound porous-concrete), LPC(Lightweight aggregate porous-concrete)] under the condition of CFSTR, and different retention times (30, 60 and 120 min). We also estimated the purification capacity of MPC under different concentrations of pollutant loadings. The MPC showed higher efficiency in water purification function than other conventional porous concretes with efficient decrease rates of SS, BOD, COD, and nutrient concentrations. In the comparison experiment for different retention times, MPC showed the highest removal efficiency for all tested pollutants in the longest retention time(120 min). In the long period test, the removal efficiencies of MPC concrete were high until 100 days after the set up of the operation, but began to decrease. Outflow flux was invariable compared with inflow flux so that extra detention time for media fouling such as back washing is not needed. But the results suggested that appropriate management is necessary for long-term operation of MPC. As the final outcome, MPC using bio organisms is considered to be efficient for stream water purification when they used as substrates for artificial river structure.

Development of Desktop-Based LDC Evaluation System for Effectiveness TMDLs (효과적인 오염총량관리를 위한 데스크탑 기반의 LDC 평가 시스템 개발)

  • Ryu, Jichul;Hwang, Ha-Sun;Lee, Sung-Jun;Kim, Eun Kyoung;Kim, Yong Seok;Kum, Donghyuk;Lim, Kyoung Jae;Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Load Duration Curve (LDC) can be used as a method for load management of point and non-point pollution source because the LDC easily assesses the water quality corresponding to hydrological changes in a watershed. Recently, the application of LDC to total pollution load management is a growing interest in Korea. In this regard, A desktop-based LDC assessment system was developed in this study to provide convenience to users in water quality evaluation. The developed system can simply produce the LDC by using streamflow and water quality data involved in its database. Also, The system can quantitatively inform the success or failure of the achievement for a target water quality at monthly scale. Furthermore, seasonal water quality and point/non-point pollution load in a watershed can be estimated by this system. We expect that the developed system will contribute to establish local and national policies regarding water management and total pollution load management because of its advantages such as the pollution tracking investigation and the analysis of water quality and pollution loading amount in an ungauged watershed.

A Study on Pollutant Loading Estimation in Seonakdong Basin (서낙동강 유역에서의 오염부하량 산정기법 연구)

  • Kim, Young-Do;Hwang, Jin-Young;Kwon, Jae-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1098-1101
    • /
    • 2006
  • 최근 3대강특별법에 의하여 시행되고 있는 환경부의 수질오염총량관리를 위해 서낙동강 유역인 낙본N 단위유역에 대한 해당 지자체의 기본계획과 시행계획이 수립된 바 있다. 낙본N 단위유역은 서낙동강을 중심으로 좌측의 대부분이 경상남도 김해시이고, 우측과 하류부는 부산광역시 강서구이다. 서낙동강은 평상시에는 주요 농업용수 공급원과 철새도래지로서 홍수시에는 거대한 유수지 역할을 하고 있다. 서낙동강 유역내에는 분뇨처리장, 하수처리장, 농업 및 축산활동, 내수면 양식어업, 오염원 배출공장 등의 점, 비점오염원이 있으며 대저수문과 녹산수문에 의해 조절되는 정체수역으로서 오염부하강도가 높은 유입지천들로 인하여 상습적인 녹조 발생수역으로 수질개선의 필요성이 매우 높은 지역이다. 본 연구에서는 대표 유역으로 낙본N유역의 소유역 중 배출부하량이 가장 큰 지류에 해당하는 조만강 유역인 낙본N06 소유역의 오염원 조사결과를 이용하여 오염부하량 산정기법을 검토하였다. 장래 오염부하량 예측은 자연증가, 개발계획, 삭감계획에 의해 산정하는데, 이와 같은 과정에서 과거 오염원조사, 부하량산정, 폐수 배출부하량 모니터링 과정에서의 불확실성이 따르게 된다. 본 연구에서는 이와 같은 오염부하량산정 과정에서의 정확도를 높이고자 오염원 자료의 증감에 따른 오염부하량 산정결과의 민감도 분석을 통하여 신뢰도 평가를 수행하였다. 방대한 오염원자료를 이용한 오염부하량 산정은 한국환경정책평가연구원(KEI)에서 개발한 데이터베이스관리 프로그램(Access Program)을 이용하였으며, 각 오염원별 오염원 현황 및 전망 결과와 환경부의 수계오염총량관리기술지침에서 제시한 각 오염원별 오.폐수발생원단위, 배출원단위, 전환계수, 배출계수 등을 이용하여 각 오염원별 배출부하량을 산정하였다. 본 연구에서는 오염원 조사나 장래 오염원 예측에서 있을 수 있는 오차에 대한 전체 배출부하량의 변화를 살펴봄으로써 방대한 양의 오염원 조사시에 정확성 및 효율성을 높이고자 하였다. 본 연구의 결과를 통해 할당부하량을 개별 오염원별로 할당하고 적정한 개발계획과 실현가능한 삭감계획 및 이행방안을 수립하기 위한 오염원조사를 수행함에 있어 기초자료의 효율적인 관리를 통해 오염부하량 산정의 정확성을 높이고자 한다.

  • PDF

Characterization of Particulate Emissions from Biodiesel using High Resolution Time of Flight Aerosol Mass Spectrometer

  • Choi, Yongjoo;Choi, Jinsoo;Park, Taehyun;Kang, Seokwon;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.78-85
    • /
    • 2015
  • In the past several decades, biofuels have emerged as candidates to help mitigate the issues of global warming, fossil fuel depletion and, in some cases, atmospheric pollution. To date, the only biofuels that have achieved any significant penetration in the global transportation sector are ethanol and biodiesel. The global consumption of biodiesel was rapidly increased from 2005. The goal of this study was to examine the chemical composition on particulate pollutant emissions from a diesel engine operating on several different biodiesels. Tests were performed on non-road diesel engine. Experiments were performed on 5 different fuel blends at 2 different engine loading conditions (50% and 75%). 5 different fuel blends were ultra-low sulfur diesel (ULSD, 100%), soy biodiesel (Blend 20% and Blend 100%) and canola biodiesel (Blend 20% and Blend 100%). The chemical properties of particulate pollutants were characterized using an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Organic matter and nitrate were generally the most abundant aerosol components and exhibited maximum concentration of $1207{\mu}g/m^3$ and $30{\mu}g/m^3$, respectively. On average, the oxidized fragment families ($C_xH_yO_1{^+}$, and $C_xH_yO_z{^+}$) account for ~13% of the three family sum, while ~87% comes from the $C_xH_y{^+}$ family. The two peaks of $C_2H_3O_2$ (m/z 59.01) and $C_3H_7O$ (m/z 59.04) located at approximately m/z 59 could be used to identify atmospheric particulate matter directly to biodiesel exhaust, as distinguished from that created by petroleum diesel in the AMS data.

Feasibility Study of Constructed Wetland System for Sewage Treatment in Rural Area

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.426-432
    • /
    • 2000
  • Field experiment was performed from August 1996 to December 1999 to examine the feasibility of constructed wetland system for sewage treatment in rural areas. A pilot system was installed in Konkuk University and the effluent of septic tank for school building was used as an influent to the wetland treatment basin. The system was composed of sand and reed, and operated continuously including winter time. Average removal rate of about 70% was observed for BOD, COD, and SS, about 50% for T-P, and about 25% for T-N. The reason for poor T-N removal might be due to high loading rate and short retention time. The system demonstrated satisfactory effluent concentration and stable performance in growing season. And it also worked adequately in wintertime even below $10^{\circ}C$ without freezing, and removal was still significant. The amount removed in BOD, COD, and SS was almost the same as in the growing season, and the amount removed in nutrients was about half of the one in growing season. Overall performance of the experimental system was compared with existing data base (NADB, 1994), and it was within the range of general system performance. As study period increased, removal rates for BOD, COD, SS, and T-P were consistently maintained and even enhanced, but removal rate for T-N decreased slightly. Wetland system was thought to be a feasible alternative for sewage treatment in rural area considering its low cost and low maintenance requirement. However, the effluent of the experimental wetland system often exceeded current effluent water quality standards, therefore, further treatment could be required if the effluent should be discharged to public waters. Wetland system of interest locates in rural area and is a part of rural ecosystem, therefore, ultimate disposal of reclaimed sewage for agricultural purpose or subsequent land treatment might be available and further research in this matter is recommended.

  • PDF

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

A study on the correlation between non-point source pollutants from the forest of Juam basin and algae bloom in the Juam lake. (주암호유역 산림기원 비점오염원물질과 주암호에 서식하는 조류번식간의 상관성 규명)

  • Kim, Nam-Jong;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.39-48
    • /
    • 2006
  • In Juam basin, the ratio of non-point pollution source among pollutant loading of basin was significantly high, since the utilization level of land was high. In addition, the most pollutants were not treated and flowed out. In this study, the correlation between non-point source pollutants from the forest area and increasing algae was investigated. 1. Chl-a concentration flowed out to runoff from forest area and stream water was low as $0.1{\sim}20.3{\mu}g/{\ell}$ and $0.1{\sim}9.3{\mu}g/{\ell}$, respectively, and chl-a concentration ($0.1{\sim}28.5{\mu}g/{\ell}$) of branch stream was higher $5{\sim}7$ times than that of runoff from forest area. 2. In correlation between runoff from forest area and Juam lake water, annual chl-a concentration of area front Juam dam was higher twice than forest area. 3. In runoff from forest area within Juam basin, flagellate, green, diatom and blue algae occupied $33.0{\sim}41.7%$, $22.2{\sim}30.8%$, $17.3{\sim}22.5%$ and $13.7{\sim}17.6%$, respectively. 4. In runoff from forest area, both green and diatom algae were maintained constantly irrespectively of season, and flagellate algae dominated since August. 5. In characteristics by forest tree types, four types algae were inhabited in mixed forest, and flagellate algae were higher in conifer and broadleaf forest than in other area. And green algae in herbaceous forest were higher than other area.