• 제목/요약/키워드: polishing characteristics

검색결과 388건 처리시간 0.025초

화학기계적 연마 가공에서의 윤활 특성 해석 (Analysis of the Lubricational Characteristics for Chemical-Mechanical Polishing Process)

  • 박상신;조철호;안유민
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.90-97
    • /
    • 1999
  • Chemical-Mechanical Polishing (CMP) refers to a material removal process done by rubbing a work piece against a polishing pad under load in the presence of chemically active, abrasive containing slurry. CU process is a combination of chemical dissolution and mechanical action. The mechanical action of CMP involves tribology. The liquid slurry is trapped between the wafer (work piece) and pad (tooling) forming a lubricating film. For the first step to understand material removal rate of the CMP process, the lubricational analyses were done with commercial 100mm diameter silicon wafers to get nominal clearance of the slurry film, roll and pitch angle at the steady state. For this purpose, we calculate slurry pressure, resultant forces and moments at the steady state in the range of typical industrial polishing conditions.

Magnetic Abrasive Polishing for Internal Face of STS Tube using Sludge Abrasive Grain

  • Kim, Hee-Nam;Soh, Dea-Wha;Hong, Sang-Jeen;Lee, Byung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권3호
    • /
    • pp.128-132
    • /
    • 2005
  • In this paper, we have investigated the characteristics of the magnetic abrasive using sludge on polishing of internal finishing of seamless stainless steel (STS304) tube applying magnetic abrasive polishing. Either white alumina (WA) or green carborundum (GC) grain was used to resin sludge at a low temperature, and the sludge of magnetic abrasive powder was synthesized and crushed into 200 meshes. Surface roughness was measured before and after polishing, and more than $40\%$ of improvement of surface roughness was achieved when WA grain was used under a specific condition. Even though some degree of surface roughness due to deeper scratches still exist, but the result showed a prospective magnetic abrasive polishing using sludge with WA or GC grains.

슬러지 연마입자를 이용한 이음매 없는 스테인리스강 튜브내면의 자기연마 (Magnetic Abrasive Polishing for Internal Face of Seamless Stainless Steel Tube Using Sludge Abrasive Grain)

  • 김희남;윤여권;김상백;최희성
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.151-157
    • /
    • 2004
  • In this paper deals with behavior of the magnetic abrasive using sludge on polishing characteristics in a new internal finishing of seamless stainless steel tube applying magnetic abrasive polishing. The magnetic abrasive using sludge-abrasive grain WA and GC used to resin bond fabricated low temperature. And sludge of magnetic abrasive powder fabricated that sludge was crused into 200 mesh. The previous research have made an experiment in the static state the movement of magnetic abrasive grain is nevertheless in the dynamic state. In this paper, We could have investigated into the changes of the movement of magnetic abrasive grain. In reference to this result, we could have made the experiment which is set under the condition of the magnetic flux density, polishing velocity according to the form of magnetic brush.

스테인레스 강의 경면가공을 위한 효율적 수퍼피니싱 조건의 결정 (Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Stainless Steel)

  • 김상규;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.100-106
    • /
    • 2013
  • Stainless steel has some excellent properties as the material for the mechanical component. Purpose of this study is carried out to obtain mirror surface on the surperfinishing of stainless steel with high efficiency. To achieve this, we have conducted a series of polishing experiment for stainless steel using abrasive film from the perspective of oscillation speed, the rotational speed of workpiece, contact roller hardness, contact pressure and feed rate. Abrasive film used this study is a micro-finishing film and a lapping film. Furthermore, the polishing characteristics and efficiency of stainless steel is discussed through measuring optimal polishing time and surface roughness. From the obtained results, it was confirmed that efficient superfinishing conditions and polishing characteristic of Stainless steel can be determined.

초정밀 자기연마 공정에 탄소나노튜브 입자의 적용에 관한 연구 (The Study on the Application of CNT Particle in High-Precision Magnetic Abrasive Polishing Process)

  • 곽태경;곽재섭
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.274-279
    • /
    • 2011
  • In this study, new abrasives that were composed of iron powder and carbon nanotube (CNT) particle were attempted to be abrasives for magnetic abrasive polishing. Because the CNT particles itself are very small ones with high hardness and magnetic strength, these properties are effective for magnetic abrasive polishing of nonmagnetic materials. As an experimental result for evaluating the machining characteristics in magnetic abrasive polishing, the CNT particles showed better performance than the conventional abrasives such as Fe and CBN powder.

플라즈마 용융법으로 제조된 Fe계 자성분말의 자기연마 특성 (Characteristics of Magnetic Polishing with Magnetic Abrasive Powder Fabricated by Plasma Melting Method)

  • 이영란;배승열;안인섭;이용철
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.20-25
    • /
    • 2001
  • Most of mold manufacturing procedures have been automated by the introduction of NC machine tool and CAD/CAM system. But the three-dimensional surface curvature of the mold must be done by hand work of well-skilled workers. Magnetic abrasive polishing powders were investigated for surface polishing for 3D curvature. This study aims to investigate homogeneously distributed hard phase in Fe matrix and strong bonding between Fe-matrix and hard phase. The NbC powder, $B_4C$ powder and $Al_2O_3$ powder were mixed in Fe-matrix respectively. Mixed Fe-hard phase powders were compacted by press and then these were melted by plasma melting. According to SEM, XRD and OM observation, Fe-NbC magnetic abrsive powder had the most homogeneous distribution and strong bonding. As a result of magnetic polishing, the surface roughness before magnetic polishing, 1 ${\mu}m$ $R_{max}$, was reduced to 0.2 ${\mu}m$ $R_{max}$ over the entire inner surface of the tube.

  • PDF

탈이온수로 희석된 실리카 슬러리에 알루미나 연마제가 첨가된 혼합 연마제 슬러리의 CMP 특성 (Chemical Mechanical Polishing Characteristics of Mixed Abrasive Slurry by Adding of Alumina Abrasive in Diluted Silica Slurry)

  • 서용진;박창준;최운식;김상용;박진성;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제16권6호
    • /
    • pp.465-470
    • /
    • 2003
  • The chemical mechanical polishing (CMP) process has been widely used for the global planarization of multi-layer structures in semiconductor manufacturing. The CMP process can be optimized by several parameters such as equipment, consumables (pad, backing film and slurry), process variables and post-CMP cleaning. However, the COO(cost of ownership) is very high, because of high consumable cost. Especially, among the consumables, the slurry dominates more than 40 %. In this paper, we have studied the CMP characteristics of diluted silica slurry by adding of raw alumina abrasives and annealed alumina abrasives. As an experimental result, we obtained the comparable slurry characteristics compared with original silica slurry in the view-point of high removal rate and low non-uniformity. Therefore, we can reduce the cost of consumables(COC) of CMP process for ULSI applications.

Blanket Wafer의 CMP특성에 Slurry가 미치는 영향 (Effect of slurry on CMP characteristics of Blanket Wafer)

  • 김경준;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.172-176
    • /
    • 1996
  • The rapid structural change of ULSI chip includes minimum features, multilevel interconnection and large diameter wafers. Demands for the advanced chip structure necessitates the development of enhanced deposition, etching and planarization techniques. Planarization refers to a process that make rugged surfaces flat and uniform. One of the emerging technologies for planarization is chemical mechanical polishing(CMP). Chemical and mechanical removal actions occur during CMP, and both appear to be closely interrelated. The purpose of this study is the optimal application of the slurry to the various types of device materials during CMP. We investigates the effect of slurry on CMP characteristics for thermal oxide and sputtered Al blanket wafers. Results from the polishing rate and the uniformity of residual film include mechanical and chemical reactions between several set of slurry and work material.

  • PDF

자기전해복합경면가공의 개발에 관한 연구(제2보) -시스템 개발 및 가공특성 (Development of the Magnetic -Electrolytic-Abrasive Polishing(MEAP)(2nd) -Development of the MEAP system and finishing characteristics-)

  • 김정두
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.31-38
    • /
    • 1995
  • Magnetic-electrolytic-abrasive polishing(MEAP) system was newly developed and the finishing characteristics of Cr-coated roller was analyzed. The paper describes the operational principle of MEAP system and magnetic field effect on the MEAP process by experimental results. The finishing characteristics and optimal finishing condition for Cr-coated roller was experimented and analyzed.

  • PDF

실리콘 웨이퍼 연마에서의 Break-in 모니터링 (Monitoring of Break-in time in Si wafer polishing)

  • 정석훈;박범영;박성민;이상직;이현섭;정해도;배소익;최은석;백경록
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.360-361
    • /
    • 2005
  • Rapid progress in IC fabrication technology has strong demand in polishing of silicon wafer to meet the tight specification of nanotopography and surface roughness. One of the important issues in Si CMP is the stabilization of polishing pad. If a polishing pad is not stabilized before main Si wafer polishing process, good polishing result can not be expected. Therefore, new pad must be subjected into break-in process using dummy wafers for a certain period of time to enhance its performance. After the break-in process, the main Si wafer polishing process must be performed. In this study, the characteristics of break-in process were investigated in Si wafer polishing. Viscoelastic behavior, temperature variation of pad and friction were measured to evaluate the break-in phenomenon. Also, it is found that the characteristic of the break-in seems to be related to viscoelastic behavior of pad.

  • PDF