• Title/Summary/Keyword: polarized light spectroscopy

Search Result 25, Processing Time 0.025 seconds

Photoisomerization and Photo-induced Optical Anisotropy of Polymethacrylate Containing Aminonitroazobenzene

  • Park, Dong-Hoon;Cho, Kang-Jin
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.123-130
    • /
    • 2001
  • Photoresponsive side chain copolymer and homopolymer containing an aminonitroazobenzene were synthesized for studying photoisomerization behavior and photo-induced anisotropy. Trans-to-cis photoisomerization was observed under the exposure of a circularly polarized visible light with UV-Vis absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532nm. Polarized absorption spectroscopy was employed to investigate the anisotropy of the polymer film during irradiationg of the excitation light. Layers of two photosensitive polymers were used for aligning liquid crystal(LC) molecules instead of one of the rubbed polyimide layers in the conventional twisted nematic cell. For producing homogeneous alignment of a nematic LC molecule, a linearly polarized light was exposed to the films of two polymers. The stability of the LC alignment upon the linearly polarized light exposure was also studied.

  • PDF

Polarized Raman Spectroscopy of Graphene

  • Cheong, Hyeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.5-5
    • /
    • 2011
  • Raman spectroscopy has become one of the most widely used tools in graphene research. The resonant Raman scattering process that gives rise to the observed strong Raman signal carries information regarding the electronic structure as well as the structural properties. When polarization of the incident excitation laser light or the scattered signal is carefully controlled, more information on the electronic and structural properties becomes available. In this tutorial, the basics of polarized Raman scattering experiments will be introduced first. Then several examples from real research will be highlighted to illustrate the application of polarized Raman spectroscopy in graphene research.

  • PDF

Optical Anisotropy of Polyimide and Polymethacrylate Containing Photocrosslinkable Chalcone Group in the Side Chain under Irradiation of a Linearly Polarized UV Light

  • Choi, Dong-Hoon;Cha, Young-Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.469-476
    • /
    • 2002
  • Photocrosslinkable soluble polyimide and polymethacrylate compound were synthesized for studying the optically induced anisotropy of the thin films. Chalcone group was introduced into the side chain unit of two polymers. We observed a photodimerization behavior between the double bonds in the chalcone group and an optical anisotropy of these materials by irradiation of a linearly polarized UV light (LPL). Optical anisotropy of the thin film was also investigated by using polarized UV absorption spectroscopy. The dynamic property of optical anisotropy in photoreactive polyimide was compared to that in polymethacrylate containing chalcone group in the side chain.

Liquid Crystal Alignment on the Films of Polymethacrylate and Polyurethane Bearing an Aminotroazobenzene Chromophore

  • Park, Dong-Hoon;Kim, Jae-Hyung;Cho, Kang-Jin
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.172-178
    • /
    • 2000
  • We synthesized polymethacrylate and polyurethane bearing a photosensitive azobenzene chromophore. Photo-induced birefringence of the thin film was observed under a linearly polarized light(λ = 532 nm). Dynamic behaviors of birefringence in two polymers were investigated in terms of the rate constants of growth and decay. An induced dichroism was observed from polarized UV-VIS absorption spectroscopy. Layers of two photosensitive polymers were used for aligning liquid crystal (LC) molecules instead of one of the rubbed polyimide layers in the conventional twisted nematic cell. For producing homogeneous alignment of a nematic LC molecule, a linearly polarized light was exposed to the films of two polymers. The stability of the LC alignment upon the linearly polarized light exposure was also studied.

  • PDF

Polarized Light Scattering Spectroscopy for Particle Size Measurement on Surface (편광산란분광법을 이용한 표면의 입자 크기 측정)

  • Cho, Hyoung-Jun;Choi, Chi-Kyu;Kim, Doo-Chol;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.560-564
    • /
    • 2005
  • We used the polarized light scattering spectroscopy(PLSS) to get selectively the particle size information on a surface in optically diffuse material, and we analyzed the experimental results by Mie scattering theory. We found that the PLSS was the proper method fer getting the surface information in optically diffuse material. This method is able to be used in biotechlology area for diagnostics.

Mechanism of Orientation of Liquid Crystal Molecules for Polarized UV-exposed Polyimide Alignment Layers (폴리애미드 배향막의 편광 자외선 조사에 따른 액정 배향 메카니즘)

  • 김일형;김욱수;하기룡
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.209-217
    • /
    • 2002
  • We studied the mechanism of orientation of polyimide molecules which were irradiated by polarized UU (PUV) using polarized Fourier transform infrared (FT-IR) spectroscopy and ultraviolet (UV) spectroscopy, According to the measured UV spectra, we found PI films mainly absorb UV light less than 350 nm wavelength, therefore, UV light less than 360 nm induces photochemical reaction of PI. PUV irradiation of PI films caused decrease of all peak intensities in the FT-IR spectra. except the newly formed broad peak at $3244 cm^{-1}$, due to degradation of the PI molecules. The remaining PI molecules after photo-degradation showed predominantly perpendicular molecular orientation to the irradiated PUV polarization direction, due to the preferential degradation of PI molecules parallel to irradiated PUV polarization direction. However the rubbing of PI films induced reorientation of the PI molecules parallel to the rubbing direction. We also investigated the alignment of the liquid crystal by rubbing or PUV irradiation. Liquid crystals align perpendicular to the PUV polarization direction and parallel to the rubbing direction.

The Characteristics of Photo-alignment with Photo-crosslinkable Polyimide (광 가교성 폴리이미드의 광배향 특성)

  • Shin, Dong-Muyng;Cho, Sun-Ju;Shon, Byoung-Choung;Choi, Jeong-Woo;Yi, Mi-Hie;Choi, Kil-Yeoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 1999
  • Photo-crosslinkable polyimide(PI) which contains CF3 moiety was synthesized. Polarized UV light transformed ketone group of PI to hydroxyl group, which was confirmed by IR and UV-visible spectroscopy. We investigated the dichroic UV-absorption before and after photo-reaction with linearly polarized light. In particular we have attempted to clarify the relationship between the anisotropy of surface region and surface azimuthal anchoring energy and knew that the anchoring energy of photo-alignment PI is comparable with that of mechanical rubbing.

Synthesis and Properties of Combined Main-Chain/Side-Chain Liquid Crystalline Polymers with Cholesteryl and Azobenzene Groups

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Main-chain/side-chain liquid crystalline polymers (MCSCLCPs) combined with an azobenzene group and a cholesteryl group were synthesized to impart light and temperature sensitivity to the polymer. The polymers were designed with the azobenzene unit as the mesogenic group of the main-chain and various compositions of the azobenzene and cholesteryl units as the mesogenic group of the side-chain. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and ultraviolet-visible (UV-Vis) spectroscopy. All the MCSCLCPs were amorphous and exhibited enantiotropic liquid crystal phases; these polymers achieved the nematic phase with increasing content of the azobenzene group and exhibited the cholesteric phase with weak liquid crystallinity as the content of the cholesteryl group was increased. Furthermore, the polymers containing the azobenzene group showed photoisomerization when exposed to UV-Vis light, and the CP-A3C7 and CP-A5C5 polymers exhibited thermochromism in the temperature range of the liquid crystal phase.

Effect of Temperature on Photoinduced Reorientation of Azobenzee Chromophore in the Side Chain Copolymers

  • 최동훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1010-1016
    • /
    • 1999
  • We synthesized the photoresponsive side chain polymers containing aminonitro azobenzene for studying the effect of temperature on photoinduced birefringence. Four different copolymers were prepared using methacrylate, α-methylstyrene, and itaconate monomer. Photoisomerization was observed under the exposure of UV light using UV-VIS absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532 nm. The change of the birefringence was observed with increasing the sample temperature under a continuous irradiation of excitation light. We could estimate the activation energy of molecular motion in thermal and photochemical mode. Besides the effect of glass transition temperature on the activation energy, we focused our interests on the effect of geometrical hindrance of polar azobenzene molecules and cooperative motion of environmental mesogenic molecules in the vicinity of polar azobenzene molecules.

Splitting of Surface Plasmon Resonance Peaks Under TE- and TM-polarized Illumination

  • Yoon, Su-Jin;Hwang, Jeongwoo;Lee, Myeong-Ju;Kang, Sang-Woo;Kim, Jong-Su;Ku, Zahyun;Urbas, Augustine;Lee, Sang Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.296-296
    • /
    • 2014
  • We investigate experimentally and theoretically the splitting of surface plasmon (SP) resonance peaks under TE- and TM-polarized illumination. The SP structure at infrared wavelength is fabricated with a 2-dimensional square periodic array of circular holes penetrating through Au (gold) film. In brief, the processing steps to fabricate the SP structure are as follows. (i) A standard optical lithography was performed to produce to a periodic array of photoresist (PR) circular cylinders. (ii) After the PR pattern, e-beam evaporation was used to deposit a 50-nm thick layer of Au. (iii) A lift-off processing with acetone to remove the PR layer, leading to final structure (pitch, $p=2.2{\mu}m$; aperture size, $d=1.1{\mu}m$) as shown in Fig. 1(a). The transmission is measured using a Nicolet Fourier-transform infrared spectroscopy (FTIR) at the incident angle from $0^{\circ}$ to $36^{\circ}$ with a step of $4^{\circ}$ both in TE and TM polarization. Measured first and second order SP resonances at interface between Au and GaAs exhibit the splitting into two branches under TM-polarized light as shown in Fig. 1(b). However, as the incidence angle under TE polarization is increased, the $1^{st}$ order SP resonance peak blue-shifts slightly while the splitting of $2^{nd}$ order SP resonance peak tends to be larger (not shown here). For the purpose of understanding our experimental results qualitatively, SP resonance peak wavelengths can be calculated from momentum matching condition (black circle depicted in Fig. 2(b)), $k_{sp}=k_{\parallel}{\pm}iG_x{\pm}jG_y$, where $k_{sp}$ is the SP wavevector, $k_{\parallel}$ is the in-plane component of incident light wavevector, i and j are SP coupling order, and G is the grating momentum wavevector. Moreover, for better understanding we performed 3D full field electromagnetic simulations of SP structure using a finite integration technique (CST Microwave Studio). Fig. 1(b) shows an excellent agreement between the experimental, calculated and CST-simulated splitting of SP resonance peaks with various incidence angles under TM-polarized illumination (TE results are not shown here). The simulated z-component electric field (Ez) distribution at incident angle, $4^{\circ}$ and $16^{\circ}$ under TM polarization and at the corresponding SP resonance wavelength is shown in Fig. 1(c). The analysis and comparison of theoretical results with experiment indicates a good agreement of the splitting behavior of the surface plasmon resonance modes at oblique incidence both in TE and TM polarization.

  • PDF