• Title/Summary/Keyword: polarization estimation

Search Result 89, Processing Time 0.026 seconds

Estimation of Soil Moisture Content from Backscattering Coefficients Using a Radar Scatterometer (레이더 산란계 후방산란계수를 이용한 토양수분함량 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Jae-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2012
  • Microwave remote sensing can help monitor the land surface water cycle, crop growth and soil moisture. A ground-based polarimetric scatterometer has an advantage for continuous crop using multi-polarization and multi-frequencies and various incident angles have been used extensively in a frequency range expanding from L-band to Ka-band. In this study, we analyzed the relationships between L-, C- and X-band signatures and soil moisture content over the whole soybean growth period. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. L-band backscattering coefficients were higher than those observed using C- or X-band over the period. Backscattering coefficients for all frequencies and polarizations increased until Day Of Year (DOY) 271 and then decreased until harvesting stage (DOY 294). Time serious of soil moisture content was not a corresponding with backscattering over the whole growth stage, although it increased relatively until early August (R2, DOY 224). We conducted the relationship between the backscattering coefficients of each band and soil moisture content. Backscattering coefficients for all frequencies were not correlated with soil moisture content when considered over the entire stage ($r{\leq}0.50$). However, we found that L-band HH polarization was correlated with soil moisture content (r=0.90) when Leaf Area Index (LAI)<2. Retrieval equations were developed for estimating soil moisture content using L-band HH polarization. Relation between L-HH and soil moisture shows exponential pattern and highly related with soil moisture content ($R^2=0.92$). Results from this study show that backscattering coefficients of radar scatterometer appear effective to estimate soil moisture content.

Research Trends on Estimation of Soil Moisture and Hydrological Components Using Synthetic Aperture Radar (SAR를 이용한 토양수분 및 수문인자 산출 연구동향)

  • CHUNG, Jee-Hun;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.26-67
    • /
    • 2020
  • Synthetic Aperture Radar(SAR) is able to photograph the earth's surface regardless of weather conditions, day and night. Because of its possibility to search for hydrological factors such as soil moisture and groundwater, and its importance is gradually increasing in the field of water resources. SAR began to be mounted on satellites in the 1970s, and about 15 or more satellites were launched as of 2020, which around 10 satellites will be launched within the next 5 years. Recently, various types of SAR technologies such as enhancement of observation width and resolution, multiple polarization and multiple frequencies, and diversification of observation angles were being developed and utilized. In this paper, a brief history of the SAR system, as well as studies for estimating soil moisture and hydrological components were investigated. Up to now hydrological components that can be estimated using SAR satellites include soil moisture, subsurface groundwater discharge, precipitation, snow cover area, leaf area index(LAI), and normalized difference vegetation index(NDVI) and among them, soil moisture is being studied in 17 countries in South Korea, North America, Europe, and India by using the physical model, the IEM(Integral Equation Model) and the artificial intelligence-based ANN(Artificial Neural Network). RADARSAT-1, ENVISAT, ASAR, and ERS-1/2 were the most widely used satellite, but the operation has ended, and utilization of RADARSAT-2, Sentinel-1, and SMAP, which are currently in operation, is gradually increasing. Since Korea is developing a medium-sized satellite for water resources and water disasters equipped with C-band SAR with the goal of launching in 2025, various hydrological components estimation researches using SAR are expected to be active.

Estimation of Typhoon Center Using Satellite SAR Imagery (인공위성 SAR 영상 기반 태풍 중심 산정)

  • Jung, Jun-Beom;Park, Kyung-Ae;Byun, Do-Seong;Jeong, Kwang-Yeong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.502-517
    • /
    • 2019
  • Global warming and rapid climate change have long affected the characteristics of typhoons in the Northwest Pacific, which has induced increasing devastating disasters along the coastal regions of the Korean peninsula. Synthetic Aperature Radar (SAR), as one of the microwave sensors, makes it possible to produce high-resolution sea surface wind field around the typhoon under cloudy atmospheric conditions, which has been impossible to obtain the winds from satellite optical and infrared sensors. The Geophysical Model Functions (GMFs) for sea surface wind retrieval from SAR data requires the input of wind direction, which should be based on the accurate estimation of the center of the typhoon. This study estimated the typhoon centers using Sentinel-1A images to improve the problem of typhoon center detection method and to reflect it in retrieving the sea surface wind. The results were validated by comparing with the typhoon best track data provided by the Korea Meteorological Administration (KMA) and Japan Meteorological Agency (JMA), and also by using infrared images of Himawari-8 satellite. The initial center position of the typhoon was determined by using VH polarization, thereby reducing the possibility of error. The detected center showed a difference of 23.76 km on average with the best track data of the four typhoons provided by the KMA and JMA. Compared to the typhoon center estimated by Himawari-8 satellite, the results showed an average spatial variation of 11.80 km except one typhoon located near land with a large difference of 58.73 km. This result suggests that high-resolution SAR images can be used to estimate the center and retrieve sea surface wind around typhoons.

The Comparative Analysis about the Firm Growth Between Large Enterprises and SMEs in the IT Companies located in Gyeonggi-do (경기지역 IT산업의 대·중소기업간 성장성 분석)

  • Yoon, Choong-Han;Son, Jong Chil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2376-2381
    • /
    • 2014
  • The necessity for co-prosperity between large and small businesses has emerged as a top policy priority as economic polarization has been exacerbated since the 2008 global financial crisis. Against this background this paper makes a detailed analysis of differences between SMEs (Small and Medium sized businesses) and large enterprises located in Gyeong-do, in respect of growth. The data set used in the analysis is the 15 year(1996-2010) panel data of IT companies (large enterprises: 80 data and SMEs: 437 data) collected from the KISVALUE database. The estimation results of Pooled OLS indicate that the coefficients representing corporate size are less than 1, which implies that the Gibrat's law, no correlation between the size of a firm and its growth rate, is not supported by the data. In the meantime, the estimated coefficients representing corporate age are negative, which implies that Jovanovic hypothesis, inverse correlation between the age and the growth rate of a firm, is consistent with the data. In short, SMEs, which are generally younger than big enterprises can achieve higher growth rate than the latter ones which are usually believed to be older. In addition, the more export- and innovation-oriented the firm, the higher its growth rates.

Switching Behaviour of the Ferroelectric Thin Film and Device Characteristics of MFSFET with Fatigue (피로현상을 고려한 강유전박막의 Switching 과 MFSFET 소자의 특성)

  • Lee, Kook-Pyo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.24-33
    • /
    • 2000
  • Switching behaviour of the ferroelectric thin film and device characteristics of the MFSFET(Metal-Ferroelectric-Semiconductor FET) are simulated with taking into account the accumulation of oxygen vacancies near interface between the ferroelectric thin film and the bottom electrode caused by the progress of fatigue. In our switching model, relative switched charge is 0.74 nC before fatigue, but after the progress of fatigue it reduces to 0.15 nC with the generation of oxygen vacancies. It indicates that the generation of oxygen vacancies strongly suppresses polarization reversal. $C-V_G\;and\;I_D-V_G$ curves in our MFSFET device model exhibit the memory window of 2 V and show the accumulation, the depletion and the inversion regions in capacitance characteristic clearly. The difference of saturation drain current of the device before fatigue in shown by the dual threshold voltages in $I_D-V_G$ curve as 6nA/$cm^2$ and decreases as much as 50% after fatigue. Decrease of the difference of saturation drain currents by fatigue implies that the accumulation of oxygen vacancies with the fatigue should be avoided in the device application. Our simulation model is expected to play an important role in estimation of the behavior of MFSFET device with various ferroelectric thin films.

  • PDF

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

Rendezvous Mission to Apophis: III. Polarimetry of S-type: For A Better Understanding of Surficial Evolution

  • Geem, Jooyeon;Jeong, Minsup;Jin, Sunho;Sim, Chae Kyung;Bach, Yoonsoo P.;Ishiguro, Masateru;Kwon, Yuna G.;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Myung-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.57.4-58
    • /
    • 2021
  • Asteroids have undergone various processes such as impacts, space weathering, and thermal evolution. Because they expose their surfaces to space without atmosphere, these evolutional processes have been recorded directly on their surfaces. The remote-sensing observations have been conducted to reveal these evolutional histories of the target asteroids. For example, crater and boulder distributions are unambiguous evidence for past nondestructive impacts with other celestial bodies. Multiband and spectroscopic observations have revealed space-weathering history (as well as compositions). Whereas most physical quantities have been examined intensively using spacecraft and telescopes, only a little has been studied on "the grain size". It is one of the fundamental physical quantities for diagnosing the collisional and thermal history of asteroids. Our group has conducted polarimetric research of asteroids (as well as Moon [1]) to determine the particle size and further investigate the evolutional histories of target asteroids [2],[3]. For example, the existence of regolith on an S-type asteroid, Toutatis, was suggested almost twenty years before space exploration [4]. Moreover, we reported that near-Sun asteroids indicate a signature of submillimeter grains, which could be created by a thermal sintering process by solar radiation [5]. However, it is important to note that in-situ polarimetry has not been reported on the asteroid surface, although the Korean Lunar Exploration Program aims to do polarimetry on the lunar surface [6]. Therefore, it is expected that the polarizer mounted on the Korean Apophis spacecraft can make the first estimate of the grain size and its regional variation over the Apophis surface. In this presentation, we outline research of S-type asteroid surfaces through remote-sensing observations and consider the role of polarimetry. Based on this review, we consider the purpose, potentiality, and strategy of the polarimetry using the onboard device for the Apophis spacecraft. We will report a possible polarization phase curve of Apophis estimated from ordinary chondrites and past observational data of S-type asteroids, taking account of the space weathering effect. Based on this estimation, we will consider the strategy of how to determine the particle size (and space weathering degree) of the Apophis surface. We will also mention the detectability of dust hovering on the surface.

  • PDF

Estimation of Soil Moisture Using Sentinel-1 SAR Images and Multiple Linear Regression Model Considering Antecedent Precipitations (선행 강우를 고려한 Sentinel-1 SAR 위성영상과 다중선형회귀모형을 활용한 토양수분 산정)

  • Chung, Jeehun;Son, Moobeen;Lee, Yonggwan;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.515-530
    • /
    • 2021
  • This study is to estimate soil moisture (SM) using Sentinel-1A/B C-band SAR (synthetic aperture radar) images and Multiple Linear Regression Model(MLRM) in the Yongdam-Dam watershed of South Korea. Both the Sentinel-1A and -1B images (6 days interval and 10 m resolution) were collected for 5 years from 2015 to 2019. The geometric, radiometric, and noise corrections were performed using the SNAP (SentiNel Application Platform) software and converted to backscattering coefficient of VV and VH polarization. The in-situ SM data measured at 6 locations using TDR were used to validate the estimated SM results. The 5 days antecedent precipitation data were also collected to overcome the estimation difficulty for the vegetated area not reaching the ground. The MLRM modeling was performed using yearly data and seasonal data set, and correlation analysis was performed according to the number of the independent variable. The estimated SM was verified with observed SM using the coefficient of determination (R2) and the root mean square error (RMSE). As a result of SM modeling using only BSC in the grass area, R2 was 0.13 and RMSE was 4.83%. When 5 days of antecedent precipitation data was used, R2 was 0.37 and RMSE was 4.11%. With the use of dry days and seasonal regression equation to reflect the decrease pattern and seasonal variability of SM, the correlation increased significantly with R2 of 0.69 and RMSE of 2.88%.

Estimation of Soybean Growth Using Polarimetric Discrimination Ratio by Radar Scatterometer (레이더 산란계 편파 차이율을 이용한 콩 생육 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.878-886
    • /
    • 2011
  • The soybean is one of the oldest cultivated crops in the world. Microwave remote sensing is an important tool because it can penetrate into cloud independent of weather and it can acquire day or night time data. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. In this study, soybean growth parameters and soil moisture were estimated using polarimetric discrimination ratio (PDR) by radar scatterometer. A ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the soybean growth condition and soil moisture change. It was set up to obtain data automatically every 10 minutes. The temporal trend of the PDR for all bands agreed with the soybean growth data such as fresh weight, Leaf Area Index, Vegetation Water Content, plant height; i.e., increased until about DOY 271 and decreased afterward. Soil moisture lowly related with PDR in all bands during whole growth stage. In contrast, PDR is relative correlated with soil moisture during below LAI 2. We also analyzed the relationship between the PDR of each band and growth data. It was found that L-band PDR is the most correlated with fresh weight (r=0.96), LAI (r=0.91), vegetation water content (r=0.94) and soil moisture (r=0.86). In addition, the relationship between C-, X-band PDR and growth data were moderately correlated ($r{\geq}0.83$) with the exception of the soil moisture. Based on the analysis of the relation between the PDR at L, C, X-band and soybean growth parameters, we predicted the growth parameters and soil moisture using L-band PDR. Overall good agreement has been observed between retrieved growth data and observed growth data. Results from this study show that PDR appear effective to estimate soybean growth parameters and soil moisture.