• Title/Summary/Keyword: polarization estimation

Search Result 89, Processing Time 0.023 seconds

Angle-Range-Polarization Estimation for Polarization Sensitive Bistatic FDA-MIMO Radar via PARAFAC Algorithm

  • Wang, Qingzhu;Yu, Dan;Zhu, Yihai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2879-2890
    • /
    • 2020
  • In this paper, we study the estimation of angle, range and polarization parameters of a bistatic polarization sensitive frequency diverse array multiple-input multiple-output (PSFDA-MIMO) radar system. The application of polarization sensitive array in receiver is explored. A signal model of bistatic PSFDA-MIMO radar system is established. In order to utilize the multi-dimensional structure of array signals, the matched filtering radar data can be represented by a third-order tensor model. A joint estimation of the direction-of-departure (DOD), direction-of-arrival (DOA), range and polarization parameters based on parallel factor (PARAFAC) algorithm is proposed. The proposed algorithm does not need to search spectral peaks and singular value decomposition, and can obtain automatic pairing estimation. The method was compared with the existing methods, and the results show that the performance of the method is better. Therefore, the accuracy of the parameter estimation is further improved.

Capacity Gain of Polarization Aligned Dual-Polarized Antenna Systems (이중 편파 안테나의 편파 정렬에 의한 전송 용량 이득)

  • Wang, Hanho;Noh, Gosan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.92-95
    • /
    • 2015
  • Capacity reflecting effects of quantized feedback information is evaluated through computer simulation for practical implementation of polarization angle estimation and compensation. In the dual-polarization antenna case, evaluated capacity values varies more than four times depending on accuracy of the polarization angle estimation and compensation. Using 6-bit the quantized feedback information, we can achieve 96.8 percentage of the capacity of the perfect feedback information case.

Merging Radar Rainfalls of Single and Dual-polarization Radar to Improve the Accuracy of Quantitative Precipitation Estimation (정량적 강우강도 정확도 향상을 위한 단일편파와 이중편파레이더 강수량 합성)

  • Lee, Jae-Kyoung;Kim, Ji-Hyeon;Park, Hye-Sook;Suk, Mi-Kyung
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.365-378
    • /
    • 2014
  • The limits of S-band dual-polarization radars in Korea are not reflected on the recent weather forecasts of Korea Meteorological Administration and furthermore, they are only utilized for rainfall estimations and hydrometeor classification researches. Therefore, this study applied four merging methods [SA (Simple Average), WA (Weighted Average), SSE (Sum of Squared Error), TV (Time-varying mergence)] to the QPE (Quantitative Precipitation Estimation) model [called RAR (Radar-AWS Rainfall) calculation system] using single-polarization radars and S-band dual-polarization radar in order to improve the accuracy of the rainfall estimation of the RAR calculation system. As a result, the merging results of the WA and SSE methods, which are assigned different weights due to the accuracy of the individual model, performed better than the popular merging method, the SA (Simple Average) method. In particular, the results of TVWA (Time-Varying WA) and TVSSE (Time-Varying SSE), which were weighted differently due to the time-varying model error and standard deviation, were superior to the WA and SSE. Among of all the merging methods, the accuracy of the TVWA merging results showed the best performance. Therefore, merging the rainfalls from the RAR calculation system and S-band dual-polarization radar using the merging method proposed by this study enables to improve the accuracy of the quantitative rainfall estimation of the RAR calculation system. Moreover, this study is worthy of the fundamental research on the active utilization of dual-polarization radar for weather forecasts.

Estimation of Polarization Ratio for Sea Surface Wind Retrieval from SIR-C SAR Data

  • Kim, Tae-Sung;Park, Kyung-Ae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.729-741
    • /
    • 2011
  • Wind speeds have long been estimated from C-band VV-polarized SAR data by using the CMOD algorithms such as CMOD4, CMOD5, and CMOD_IFR2. Some SAR data with HH-polarization without any observations in VV-polarization mode should be converted to VV-polarized value in order to use the previous algorithms based on VV-polarized observation. To satisfy the necessity of polarization ratio (PR) for the conversion, we retrieved the conversion parameter from full-polarized SIR-C SAR image off the east coast of Korea. The polarization ratio for SIR-C SAR data was estimated to 0.47. To assess the accuracy of the polarization ratio coefficient, pseudo VV-polarized normalized radar cross section (NRCS) values were calculated and compared with the original VV-polarized ones. As a result, the estimated psudo values showed a good agreement with the original VV-polarized data with an root mean square error by 0.99 dB. We applied the psudo NRCS to the estimation of wind speeds based on the CMOD wind models. Comparison of the retrieved wind field with the ECMWF and NCEP/NCAR reanalysis wind data showed relatively small rms errors of 1.88 and 1.91 m/s, respectively. SIR-C HH-polarized SAR wind retrievals met the requirement of the scatterometer winds in overall. However, the polarization ratio coefficient revealed dependence on NRCS value, wind speed, and incident angle.

The Fabrication and Performance Estimation of Circularly Polarization Diversity System for Multipath Fading Reduction (다중경로페이딩 경감을 위한 원편파 다이버시티 시스템 제작 및 성능 평가)

  • 이주현;김판신;안재성;김태홍;고연화;김흥진;하덕호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.609-612
    • /
    • 2003
  • For combating multipath fading in wireless radio environment, diversity schemes is useful. In this paper, for performance improvement of polarization diversity system, we analyzed a two-branch polarization diversity at the receiving end of a mobile link when the transmitter emits a circularly polarized wave. And In order to calculate the correlation coefficient considering the XPD(cross polarization discrimination) between the received signals for the two diversity branches, a simple theoretical model of circular polarization diversity is adopted and calculate correlation coefficient. From the analysis results, it is seen that the correlation coefficient of circular polarization diversity evaluated by the XPD is less than that of vertical polarization diversity. And also, we designed and fabricated circular polarization diversity system with microstrip antenna. we analyzed data measured in indoor NLOS environment using fabricated circular polarization diversity system. From the measurement results, it is clearly seen that the diversity effect of circular polarization diversity system is higher 3dB than vertical polarization diversity system.

  • PDF

Runoff Analysis Using Dual Polarization RADAR and Distributed Model (이중편파 레이더강우와 분포형 모형을 이용한 유출해석)

  • Jeong, Jiyoung;Yu, Myungsu;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.801-812
    • /
    • 2014
  • In this study, average rainfall of basin was estimated and compared with that obtained from Biseulsan dual polarization RADAR. And the runoffs are estimated using Vflo distribution model for Habcheon reservoir basin and Huicheon basin. In the rainfall estimation using dual polarization RADAR, the rainfall was estimated by using the specific phase difference and differential reflectivity of dual polarization RADAR variables. As a result, for all events rainfall estimation using dual polarization RADAR has the closest value to the gauge rainfall in terms of the peak rainfall and total rainfall. Also, runoff simulation results from dual polarization RADAR show the better results. It is concluded that the method using dual polarization radar can improve the accuracy more than a single polarization radar using only horizontal reflectivity.

Improvement of Rainfall Estimation according to the Calibration Bias of Dual-polarimetric Radar Variables (이중편파레이더 관측오차 보정에 따른 강수량 추정값 개선)

  • Kim, Hae-Lim;Park, Hye-Sook;Ko, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1227-1237
    • /
    • 2014
  • Dual-polarization can distinguish precipitation type and dual-polarization is provide not only meteorological phenomena in the atmosphere but also non-precipitation echoes. Therefore dual-polarization radar can improve radar estimates of rainfall. However polarimetric measurements by transmitting vertically vibration waves and horizontally vibrating waves simultaneously is contain systematic bias of the radar itself. Thus the calibration bias is necessary to improve quantitative precipitation estimation. In this study, the calibration bias of reflectivity (Z) and differential reflectivity ($Z_{DR}$) from the Bislsan dual-polarization radar is calculated using the 2-Dimensional Video Disdrometer (2DVD) data. And an improvement in rainfall estimation is investigated by applying derived calibration bias. A total of 33 rainfall cases occurring in Daegu from 2011 to 2012 were selected. As a results, the calibration bias of Z is about -0.3 to 5.5 dB, and $Z_{DR}$ is about -0.1 dB to 0.6 dB. In most cases, the Bislsan radar generally observes Z and $Z_{DR}$ variables lower than the simulated variables. Before and after calibration bias, compared estimated rainfall from the dual-polarization radar with AWS rain gauge in Daegu found that the mean bias has fallen by 1.69 to 1.54 mm/hr, and the RMSE has decreased by 2.54 to 1.73 mm/hr. And estimated rainfall comparing to the surface rain gauge as ground truth, rainfall estimation is improved about 7-61%.

Uncertainty in Potentiodynamic Polarization Resistance Measurement (동전위 분극저항 측정에서의 불확도)

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.193-196
    • /
    • 2009
  • For the estimation of uncertainty in potentiodynamic polarization resistance measurement, the type A uncertainty was measured using type 316 stainless steel in an acidified NaCl solution. Sensitivity coefficients were determined for measurand such as scan rate of potential, temperature of solution, concentration of NaCl, concentration of HCl, surface roughness of specimen and flow rate of purging gas. Sensitivity coefficients were large for the measurand such as the scan rate of potential, temperature of solution and roughness of specimen. However, the sensitivity coefficients were not the major factors influencing the combined standard uncertainty of polarization resistance due to the low values of uncertainty in measurements of the measurands. A major influencing factor was the concentration of NaCl. The value of type A uncertainty was 1.1 times the value of type B uncertainty, and the combined standard uncertainty was 10.5 % of the average value of polarization resistance.

OPTICAL PROPERTIES OF ASIAN DUST ESTIMATED FROM GROUND BASED POLARIZATION MEASUREMENTS

  • KUSAKA Takashi;NISHISAKA Tomoya
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.385-387
    • /
    • 2005
  • Polarimetric measurements of the sky radiation by the PSR-I000, which is the multi-spectral polarimeter developed by the Opt Research Corporation and has the same wavelength regions (443nm, 490nm, 565nm, 670nm, 765nm and 865nm) as the ADEOSII/POLDER sensor, have been carried out at the ground station in Kanazawa city, Japan from March to May. First of all, the wavelength dependency of degrees of polarization is examined and it is shown that degrees of polarization measured under the hazy dust cloud are lower than those measured in the clear sky and decrease as the wavelength increases. Next, a new method for estimating optical properties, such as the optical thickness, the number size distribution and the refractive index, of the Asian dust and the ground reflectance from degrees of polarization measured by PSR-I000 is described. Finally, this method is applied to polarization data acquired on April 15,2002. As a result, it is shown that our estimation algorithm provides a good result.

  • PDF

A laboratory experiment on estimation of homogeneity of subsurface media by Polarimetric Ground Penetrating Radar

  • Kobayashi, Takao
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.31-34
    • /
    • 2006
  • Laboratory experiment of polarimetric GPR measurement was conducted for the purpose of estimating subsurface inhomogeneity. Tow realization of inhomogeneous subsurface media were made by burying stone objects of different dimensions in homogeneous dry sand. Polarization ratio of cross polarization to co polarization data were examined to find their obviously distinguishable behavior.

  • PDF