• Title/Summary/Keyword: polarization conversion

Search Result 74, Processing Time 0.021 seconds

A study of polarized mode convertible, wavelength tunable optical filter utilizing acoustic barrier and acouxto-optic effect in $LiNbo_3$ ($LiNbo_3$의 음향광학효과와 음향파 장벽을 이용한 편광모드 변환형, 파장가변 광 필터에 관한 연구)

  • 임경훈;정홍식
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.193-197
    • /
    • 2000
  • A polarized mode convertible, wavelength tunable optical filters with acoustic barriers and acousto-optic effect have been produced in LiNb03 substrate utilizing the Ti double diffusion technique. Polarization conversion in excess of 81 % and a spectral width of -200 kHz (-1.83 nm) were achieved at a wavelength of 1551.6 nm and RF frequencies of 173.07 kHz and 173.05 kHz for both transverse electric (TE) and transverse magnetic (lM) input polarizations, respectively. The electrical driving power was 10.97 mW and reduced to about 10% of one for an optical filter without an acoustic barrier. A linear tuning rate of 8.2 nmlMHz and sidelobe intensity of -4 dB was demonstrated. rated.

  • PDF

High-harmonic Generation from Solid Surface Using an Oscillating Mirror Model and Plasma Mirror System for High Contrast Laser Pulse

  • Kim, I-Jong;Choi, Il-Woo;Janulewicz, Karol Adam;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • High-order harmonic generation from a solid surface affected by the contrast of a laser pulse was studied using an oscillating mirror model. High-order harmonics generated from solid surfaces have unusual properties such as spectral redshift, and an intensity difference between even- and odd-order harmonics which is not reported for high-order harmonics generated by a gas medium. We confirmed that high-order harmonics from solid surfaces have selectivity of polarization as well as cut-off extension and the enhancement of conversion efficiency proportional to laser intensity. And the principle of operation and the characteristics of a plasma mirror system developed for achieving high contrast laser pulses to pursue the experimental realization of high-harmonic generation from solid surfaces are reported. Energy fluence on the plasma mirrors is tunable between $10\;J/cm^2$ and $1000\;J/cm^2$ and around 1000 shots are available before the plasma mirrors require replacement.

Light transmission in nanostructures

  • Kim, D. S.;Park, Q-H.;S. H. Han;Ch. Lienau
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.113-115
    • /
    • 2003
  • We investigate transmission of light in nanoscale structures. We present spatial and temporal domain measurements of the dephasing of surface plasmon excitations in metal films with periodic nano-hole arrays. By probing coherent spatial SP propagation lengths of a few f1. $\mu$m and an ultrafast decay of the SP polarization on a 10 fs timescale, we demonstrate that the SP transmission peaks are homogeneously broadened by the SP radiative lifetime. The pronounced wavelength and hole size dependence of the dephasing rate shows that the microscopic origin of the conversion of SP into light is a Rayleigh-like scattering by the periodic hole array. We have experimentally studied the dephasing of surface plasmon excitations in metallic nano-hole arrays. By relating nanoscopic SP propagation, ultrafast light transmission and optical spectra, we demonstrate that the transmission spectra of these plasmonic bandgap structures are homogeneously broadened. The spectral line shape and dephasing time are dominated by Rayleigh scattering of SP into light and can varied over a wide range by controlling the resonance energy and/or hole radius. This opens the way towards designing SP nano-optic devices and spatially and spectrally tailoring light -matter interactions on nanometer length scales.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Design of a wideband cymbal transducer array (광대역 심벌 트랜스듀서 배열 설계)

  • Kim, Donghyun;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.170-178
    • /
    • 2020
  • Cymbal transducers are often used as an array rather than single because they have a high quality factor and low energy conversion efficiency. When used as an array, there occurs a big change in the frequency characteristics of the array due to the interaction between constituent transducers. In this study, we designed the structure of a cymbal transducer array to have ultra-wideband characteristics using this property. First, cymbal transducers with specific center frequencies were designed. Then, a 2×2 planar array was constructed with the designed transducers, where the cymbal transducers were arranged to have same or opposite polarization directions. For this structure, we analyzed the effect of the difference in the center frequency of and the spacing between the constituent transducers on the acoustical characteristics of the array. Based on the analysis, we designed the structure of the cymbal transducer array to have the widest possible bandwidth.

Effect of the Pore Structure on the Anodic Property of SOFC (SOFC 음극의 기공구조가 음극특성에 미치는 영향)

  • 허장원;이동석;이종호;김재동;김주선;이해원;문주호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.

Fabrication Characteristics and Performance Evaluation of a Large Unit Cell for Solid Oxide Fuel Cell (고체산화물연료전지용 대면적 단위전지 제조특성 및 성능평가)

  • Shin, Y.C.;Kim, Y.M.;Oh, I.H.;Kim, H.S.;Lee, M.S.;Hyun, S.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.13-16
    • /
    • 2008
  • Solid oxide fuel cell(SOFC) is an electrochemical energy conversion system with high efficiency and low-emission of pollution. In order to reduce the operating temperature of SOFC system under $800^{\circ}C$, the thickness reduction of YSZ electrolyte to be as thin as possible, e.g., less than 10 ${\mu}m$ are considered with the microstructure control and optimum design of unit cell. Methods for reducing the thickness of YSZ electrolyte have been investigated in coin cell. Moreover, a large unit cell($8cm{\times}8cm$) for SOFC was fabricated using an anode-supported electrolyte assembly with a thinner electrolyte layer, which was prepared by a tape casting method with a co-sintering technique. we studied the design factors such as active layer, electrolyte thickness, cathode composition, etc,. by the coin type of unit cell ahead of the fabrication process of a large unit cell and also reviewed about the evaluation technique of a large size unit cell such as interconnect design, sealing materials and current collector and so forth. Electrochemical evaluations of the unit cells, including measurements such as power density and impedance, were performed and analyzed. Maximum power density and polarization impedance of coin cell were 0.34W/$cm^2$ and $0.45{\Omega}cm^2$ at $800^{\circ}C$, respectively. However, Maxium power density of a large unit cell($5cm{\times}5cm$) decreased to 0.21W/$cm^2$ at $800^{\circ}C$ due to the increase of ohmic resistance. However, It was found that the potential value of a large unit cell loaded by 0.22A/$cm^2$ showed 0.76V at 100hrs without the degradation of unit cell.

  • PDF

Design of a Full Polarimetric Scatterometer for X-Band (X-밴드용 완전 편파 Scatterometer 설계)

  • Hwang, Ji-Hwan;Lee, Kyung-Yup;Park, Seong-Min;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1308-1315
    • /
    • 2009
  • A full-polarimetric scatterometer(HPS: Hongik Polarimetric Scatterometer) for X-band is designed, fabricated, and verified using the theoretically well-known point-targets in this paper. The X-band full-polarimetric scatterometer consists of an OMT(Orthogonal-Mode Transducer)+horn antenna, the angle control part for the OMT+horn antenna, a transmitter/receiver with a network analyzer and a frequency-conversion circuitry, and a movable support of these parts. We use an inclinometer sensor to control the vertical and horizontal incidence angles. The full polarimetric data can be obtained because of the polarization switches and the OMT. The accuracy of the scatterometer system is verified by measuring the polarimetric RCS(Radar Cross Section) of one of the theoretically well-known point-targets, i.e., a corner reflector.

A study on the improvement of frictional performance of friction material for automobile brake by spray treatment (용사처리에 의한 자동차 브레이크용 마찰재료의 마찰성능개선에 관한 연구)

  • 김윤해;배창원;손태관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.67-76
    • /
    • 1998
  • Friction materials for brake linings and clutches have severe performance requirements. The principal function of such frictional elements is to convert kinetic energy to heat, and then either to absorb or to dissipate heat. In order to achieve these objectives, the coefficient of friction must be as high as possible, independent of variations in operating conditions, and the necessary energy conversion must be accomplished with a minimum of wear on the contacting parts. In this study, Al powder, Al bronze powder and Mo powder used in general for automobile brake was sprayed on automobile brake disc to restrain rust and to maintain friction performance. Dynamo and corrosion tests have been carried out. It is concluded that the sprayed disc with Al bronze powder has the most improved frictional performance and anti-corrosive characteristics. The main results obtained can be summarized as follows; 1. From the corrosion current density test for gray cast iron and sprayed disc with powders of Al, Al bronze and Mo, it was cleared that the spray treatment with Al bronze powder showed the most superior anti-corrosive characteristics than other powders. 2. By anode polarization toward the noble direction from corrosion potential, corrosion current density with sprayed brake disc by Al-bronze powder was the lowest. 3. Mean frictional coefficients obtained from dynamo test are as follows : the sprayed disc with Al(99.99%) powder was 0.190 ; the sprayed disc with Al-bronze powder was 0.312 ; the sprayed disc with Mo powder was 0.257 ; the non-sprayed disc of gray cast iron was 0.331. In the case of the sprayed disc Al-bronze powder showed the most excellent frictional characteristics . 4. Amount of burnish quantity obtained from burnish test by dynamometer is as follows : the sprayed disc with Al-powder was 1.079 mm : the sprayed disc with Al-bronze powder was 0.155 mm : the sprayed disc with Mo powder was 0.253 mm : the non-sprayed disc of gray cast iron was 0.241 mm. Al-bronze powder also showed the most excellent burnish characteristics.

  • PDF

Anodic Oxidation of Potassium Iodide Solution (II) (요오드화칼륨 수용액의 양극산화 (제2보))

  • Nam Chong Woo;Kim Hark Joon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.373-380
    • /
    • 1974
  • Direct electrochemical preparation of periodate from iodide $(I^-{\to}{IO_4}^-)$ was investigated using a none-diaphragm cell and lead dioxide anode. The direct electrolytic conditions were combinations of the respectively results on the processes of iodate from iodide$(I^-{\to}{IO_3}^-)$, and periodate from iodate$({IO_3}^-{\to}{IO_4}^-)$ which were reported by the author, previously. The optimum condition was achieved when 1.0 M potassium iodide solution containing 0.5 g/l potassium dichromate as an anti-reducing agent was electrolyzed at anodic current density of $15{\AA}/dm^2$ and electrolytic temperature of $60^{\circ}C$. Under such a condition, the current efficiency was found to be 84 % at 98 % conversion of iodide to periodate. The explanation of electrode reaction was also given a consideration based on the polarization curves at lead dioxide anode in various electrolyte solutions.

  • PDF