• Title/Summary/Keyword: polar low

Search Result 524, Processing Time 0.03 seconds

Prevailing Subsurface Chlorophyll Maximum (SCM) Layer in the East Sea and Its Relation to the Physico-Chemical Properties of Water Masses (동해 전역에 장기간 발달하는 아표층 엽록소 최대층과 수괴의 물리 화학적 특성과의 상관관계)

  • Rho, TaeKeun;Lee, Tongsup;Kim, Guebuem;Chang, Kyung-Il;Na, TaeHee;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.34 no.4
    • /
    • pp.413-430
    • /
    • 2012
  • To understand the scales of the spatial distribution and temporal duration of the subsurface chlorophyll-a maximum (SCM) observed in the Ulleung Basin of the East Sea, we analyzed physical and chemical data collected during the East Asian Seas Time-series-I (EAST-I) program. The SCM layer occurred at several observation lines from the Korea Strait to $37.9^{\circ}N$ in the Ulleung Basin during August of 2008 and 2011. At each observation line, the SCM layer extended from the coast to about 200 km off the coast. The SCM layer was observed between 30 and 40 m depth in the Ulleung Basin as well as in the northwestern Japan Basin along $132.3^{\circ}E$ from $38^{\circ}N$ to $42.3^{\circ}N$ during July 2009, and was observed around 50 m depth in the northeastern Japan Basin ($135-140^{\circ}E$ and $40-45^{\circ}N$) during July 2010. From these observed features, we hypothesize that the SCM layer observed in the Ulleung Basin may exist in most of the East Sea and may last for at least half-year (from the early May to late October). The nutrient supply mechanism for prolonged the SCM layer in the East Sea was not known, but it may be closely related to the horizontal advection of the nutrient rich and low oxygen waters observed in the Korea Strait between a 50 m depth to near the bottom. The prolonged development of the SCM layer in the Ulleung Basin may result in high primary production and would also be responsible for the high organic carbon content observed in the surface sediment of the region.

Planktic Foraminiferal Assemblages of Core Sediments from the Korea Strait and Paleoceanographic Changes (대한해협 코아 퇴적물의 부유성 유공충 군집 특성과 고해양 환경 변화)

  • Kang, So-Ra;Lim, D.I.;Rho, K.C.;Jung, H.S.;Choi, J.Y.;Yoo, H.S.
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.464-474
    • /
    • 2006
  • The paleoceanography since 14 ka was reconstructed based on the planktic foraminiferal assemblages of core sediments from the outer shelf of the Korea Strait. Planktic foraminifera in the core sediments can be divided into four assemblages: A, B, C, and D. Assemblage A consists mainly of Globigerinoides ruber group and Globigerinoides conglobatus with low abundance (less than 10%), indicating the tropical-subtropical water mass. Assemblage B is composed of Pulleniatina obliquiloculata and Neogloboquadrina dutertrei, the indicator of Kuroshio Current, and shows the aspect of the inflow of the Tsushima Current into the Korea Strait. Assemblage C yields polar-subpolar species, mainly Neogloboquadrina incompta and N. pachyderma. It decreases upward of the core. Assemblage D contains coastal water species such as Globigerina bulloides and G. quinqueloba. It is abundant in the lower to middle region of the core. From the analysis of distributions of each assemblage and the result of age datings in the core, it is suggested that the Korea Strait played a role of channelling the East China Sea and the East Sea after the LGM (ca. 14 ka). During this time, the coastal water, affected by fresh waters originated from the river systems of China and/ or the Korean Peninsula, flourished around the Korea Strait and theses coastal water might entered to the East Sea. Around 8.5 ka, the effect of the Tsushima Current started to strengthen in this region, and the present current system seems to be formed at about $7{\sim}6ka$.

In vitro Development of Somatic Cell Nuclear Transferred Bovine Embryos Following Activation Timing in Enucleated and Cryopreserved MII Oocytes (탈핵 후 동결한 MII 난자의 활성화 시기가 체세포 핵치환 이후 소 난자의 체외발달에 미치는 영향)

  • 박세필;김은영;김선균;이영재;길광수;박세영;윤지연;이창현;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.245-252
    • /
    • 2002
  • This study was to evaluate the in vitro survival of bovine enucleated MII (eMII) oocytes according to minimum volume cooling (MVC) freezing method and activation timing, and their in vitro development after somatic cell nuclear transfer (SONT). in vitro matured bovine oocytes for 20 h were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst, and their 1st polar body and MII plate were removed by enucleation micropipette under UV filter. Also, eMII oocytes were subjected to activation after (group II) and before (group III) vitrification in 5 ${\mu}{\textrm}{m}$ ionomycin added CRlaa medium for 5 min. For vitrification, eMll oocytes were pretreated with EG10 for 5 min, exposed to EG30 for 30 sec and then directly plunged into L$N_2$. Thawing was taken by 4-step procedures at 37$^{\circ}C$. Survived eMII oocytes were subjected to SONT with cultured adult bovine ear cells. Reconstructed oocytes were cultured in 10 $\mu\textrm{g}$/$m\ell$ of cycloheximide and 2.5 $\mu\textrm{g}$/$m\ell$ of cytochalasin D added CRlaa medium for 1 h, and then in 10 $\mu\textrm{g}$/$m\ell$ of cycloheximide added CRlaa medium for 4 h. Subsequently, the reconstructed oocytes were incubated for 2 days and cleaved embryos were further cultured on cumulus-cell monolayer drop in CRlaa medium for 6 days. Survival rates of bovine vitrified-thawed eMII oocytes in group II (activation after vitrification and thawing) and III (activation before vitrification) were 81.0% and 84.9%, respectively. Fusion rates of cytoplasts and oocytes in group II and III were 69.0% and 70.0%, respectively, and their results were not different with non-frozen NT group (control, 75.2%). Although their cleaved rates (53.4% and 58.4%) were not different, cytoplasmic fragment rate in group II (32.8%) was significantly higher than that in group III (15.6%)(P<0.05). Also, subsequent development rate into >morula in group II (8.6%) was low than that in group III(15.6%). However, in vitro development rate in group III was not different with that in control (24.8%). This result suggested that MVC method was appropriate freezing method for the bovine eMII oocytes and vitrified eMII oocytes after pre-activation could support in vitro embryonic development after SONT as equally well as fresh oocytes.

Effect of Demecolcine-Assisted Enucleation and Recipient Cell Cycle Stage on the Development of Nuclear Transfer Bovine Embryos (Demecolcine 처리에 의한 탈핵과 수핵란 세포질의 세포 주기가 소 핵이식란의 발육에 미치는 영향)

  • Back J. J.;Park C. K.;Yang B. K.;Kim C. I.;Cheong H. T.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.175-180
    • /
    • 2005
  • This study was conducted to examine the effects of demecolcine-assisted enucleation and recipient cell cycle stage on the development of bovine somatic cell nuclear transfer (NT) embryos. In vitro cultured oocytes for $16\~20$ h were classified by first polar body (1st PB) extrusion and cell cycle stage (MI and MII) and treated $0.4\;{\mu}L/mL$ demecolcine for 40 min before enucleation. Enucleated oocytes were fused electrically with bovine ear skin cells, activated by Ca-ionophore+DMAP, and cultured in vitro. Most of eggs ($86.2\%$) treated with demecolcine protruded a chromosome mass and enucleated efficiently ($98.8\%$, (P<0.05). Demecolcine did not have a deteriorative effect on the development of NT embryos. Developmental rate of NT embryos reconstituted with oocytes extruded 1st PB significantly higher than that of NT embryos produced by oocytes without 1st PB ($18.2\%\;vs.\;4.6\%\cdot$, P<0.05). Cleavage and blastocyst formation rate of embryos reconstituted with MI oocytes ($69.4\%\;and\;5.9\%$, respectively) were significantly lower than those of embryos reconstituted with MII oocytes ($96.7\%\;and\;23.9\%$, respectively, P<0.05). From the present result, it is suggested that domecolcine is useful for the enucleation of recipient oocytes in bovine NT procedures, and MII oocytes rather than MI oocytes are more appropriate for recipient cytoplasm. Although, the potential to develop into blastocysts of NT embryos produced by 1st PB-nonextruded and MI oocytes was very low, these oorytes could be used for NT.

Environmental Assessment of the Shihwa Lake by using the Benthic Pollution Index (저서오염지수(BPI)를 이용한 시화호 환경평가)

  • Lee, Jae-Hac;Park, Ja-Yang;Lee, Hyung-Gon;Park, Heung-Sik;Kim, Dong-Sung
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2003
  • In order to assess the ecological changes induced by organic pollutants of the Shihwa Lake, BPI (Benthic Pollution Index) based on the benthic faunal community was employed. It was modified from Infaunal Trophic Index (ITI), and recommended as a pollution detecting method for the environmental assessment. The BPI values were calculated from the benthos data, which were collected for three terms: in 1980, before the Shihwa Lake was built up; in 1994-1997, which the Shihwa Lake was completely isolated from the outer seawater; in 1997-1999, after inflow of the outer seawater. Since the Shihwa Dike was constructed in February 1994, the pollution intensity of the lake had been increased from the narrow and inner part of the former Gyeonggi Bay and spread fast along the coast line of the Shihwa Lake. Then, in 1996 it showed the very high BPI levels all around the Lake. This serious polluted condition had been lasted till 1997, when the inflow of the seawater was begun. In 1998, from the nearest part of the Shihwa Gate, the BPI levels gradually became low in most area of the Lake, except its inner and narrow part. These greatly lowered BPI levels mean that the seawater inflow could be assumed to affect positively in the lake. Furthermore, BPI gave the same results from the other environmental assessment based on the abundance and the species richness of macrobenthic community. It shows that BPI could be useful as an effective method to assess the marine environment and evaluate the status of environmental conditions.

Spatial Distribution of Transparent Exopolymer Particles(TEP) and Their Relation to Carbon Species in the Euphotic Layer of the Northern East Sea (동해 북부해역 유광층에서 TEP 분포와 이산화탄소 인자와의 상호관련성)

  • Jeon, Hyun-Duck;Rho, Tae-Keun;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.33-44
    • /
    • 2012
  • Transparent exopolymer particles (TEP) are formed by aggregation of polysaccharide products excreted by phytoplankton and have sticky character like gel. They play important role in the production of marine snow in water column. To study the distribution pattern of TEP concentration and its role in carbon cycle in the surface ocean, we measured pH, Total alkalinity (TA), and chlorophyll-a in addition to physical characteristics of seawater within the surface water column. TEP concentrations ranged from nearly undetectable values to $338{\mu}g\;Xeq\;l^{-1}$. They were considerably lower than previously reported values from costal sites, but showed similar values observed in other oceanic region during phytoplankton bloom periods. The spatial distribution of TEP concentrations were similar to those of chlorophyll-a, which indicate that the production of TEP were closely related to phytoplankton. Calculated total dissolved inorganic carbon ($TCO_2$) from the pH and TA was normalized to 35 psu of salinity ($NTCO_2$) and showed negative linear relationship with temperature. Biological drawdown of $NTCO_2$ ($NTCO_{2bio}$) was estimated from the difference between theoretical $NTCO_2$ values and observed $NTCO_2$. In the warm region located south of $40^{\circ}N$ along the $132.5^{\circ}N$ meridional lines, $NTCO_{2bio}$ showed negative value and TEP concentrations were high. This suggested that negative $NTCO_{2bio}$ may be attributed to the biological processes. At the stations located between 44 and $46^{\circ}N$, TEP concentrations showed high concentration at the chlorophyll-a maximum layer within the water column while they showed low concentration in the surface layer. Carbon content of TEP constituted about 40% of $NTCO_{2bio}$ at the chlorophylla maximum layer. In this study, we could not observe any positive and negative relationship between TEP concentration and $NTCO_2$ or pH. It is obvious that we should consider the importance of TEP in the biological carbon cycling processes within surface layer.

Reproductive Phenology of Four Korean Seagrasses, Zostera caespitosa, Z. caulescens, Z. japonica and Z. marina (한국산 해초 포기거머리말, 수거머리말, 애기거머리말과 거머리말의 생물계절학)

  • Lee, Sung-Mi;Lee, Sang-Yong;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.125-133
    • /
    • 2005
  • This study described the phonology and reproductive potential of four species of Korean seagrasses, Zostera caespitosa, Z. caulescem, Z. Japonica and Z. marina. Z. caespitosa and Z. caulescens sampled from a mixed stand at the subtidal area of Yulpo Bay, Geojedo of the South Sea of Korea in November 2002 and August 2003. Z japonica and Z. marina occurred at the depth between the middle intertidal and shallow subtidal (<1m below mean sea level) of Seungbongdo (in Yellow Sea) samples collected in February and October 2003. The sexual reproductive phase of the four Zostera species was apparently different in timing of flowering, reproductive period, fruiting and seed maturing. Z. caespitosa flowered from February to early May $(10-16^{\circ}C)$, and its seed production completed in early May. The reproductive shoots of Z. caulescens began to appear in January $(9^{\circ}C)$, and its flowering followed from February to June $(10-19^{\circ}C)$. The flowers of Z. japonica were observed from July to September $(18-22^{\circ}C)$, and its seeds matured from August to September. The most commonly I marina flowered from April to August $(7-21^{\circ}C)$ and developed into seeds in July. Z. caulescens, the largest plant, had the highest number of seeds per shoot and longest spadix length. Z. marina, which was intermediate In size, recorded the highest reproductive potential. The study indicates that the reproductive phase and potential of the four species of seagrass from Korea are highly related to water temperature, and the populations of these species show a perennial lifespan with a low sexual reproductive input.

A Study on the Paleomagnetism of Southern Korea since Permian (페름기(紀) 이후(以後) 한국(韓國)의 고지자기(古地磁氣)에 관(關)한 연구(硏究))

  • Kim, Kwang Ho;Jeong, Bong II
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.67-83
    • /
    • 1986
  • Oriented hand samples were collected from Gobangsan Formation and Nogam Formation in the north of Danyang and south of Yeongchun, from Bansong Group in and around Danyang, from Nampo Group in Chungnam Coalfield, from Gyeongsang Supergroup distributed from Waegwan through Daegu to Gyeongsan and from Daegu to Goryong, and from volcanic flows in Jeongog area and Jeju Island to study the paleomagnetism of southern Korea since Permian. Stepwise alternating field and thermal demagnetization experiments were carried out to determine optimum fields and temperatures. Observed mean paleomagnetic directions are as follows: $D=331.5^{\circ}$, $I=25.1^{\circ}$, $a95=12.8^{\circ}$ for Permian, $D=325.6^{\circ}$, $I=46.1^{\circ}$, $a95=11.8^{\circ}$ for Triassic, $D=313.4^{\circ}$, $I=43.1^{\circ}$, $a95=16.0^{\circ}$ for early Jurassic, $D=41.3^{\circ}$, $I=64.6^{\circ}$, $a95=4.5^{\circ}$ for early Cretaceous, $D=28.3^{\circ}$, $I=58.1^{\circ}$, $a95=2.3^{\circ}$ for late Cretaceous, $D=2.0^{\circ}$, $I=55.8^{\circ}$, $a95=6.6^{\circ}$for Quaternary. To describe the tectonic translocation of southern Korean block, northern Eurasian continental block was used as a reference frame. For each age since Permian the expected northern Eurasian field directions in terms of paleolatitude and declination were calculated. The paleolatitudes of Permian ($13.2^{\circ}N$) and early Jurassic ($25.1^{\circ}N$) obtained from the study area are quite different from those of Permian ($66.0^{\circ}N$) and early Jurassic ($68.1^{\circ}N$) which are expected for northern Eurasia. The declinations of Permian ($331.5^{\circ}$) and early Jurassic ($313.4^{\circ}$) are also quite different from those of the Permian ($56.6^{\circ}$) and the early Jurassic ($47.5^{\circ}$) expected for northern Eurasia. The Cretaceous paleolatitude is similar to the expected within error limit, but the declination for the same period is significantly different from that of the expected for the northern Eurasia. From the above evidences it is suggested that the south Korean land mass had moved from low latitude in Permian to north and sutured to northern continental block since early Jurassic. The relative rotations of early Cretaceous($27.4^{\circ}$) and late Cretaceous($10.8^{\circ}$) to northern Eurasian continent reveal that the Korean land mass might be rotated clockwise in two different times, probably in late Early Cretaceous and in Tertiary.

  • PDF

The Summer Distribution of Picophytoplankton in the Western Pacific (하계 서태평양의 초미소 식물플랑크톤 분포 특성 연구)

  • Noh Jae-Hoon;Yoo Sin-Jae;Kang Sung-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.67-80
    • /
    • 2006
  • The effect of environmental forcing on picophytoplankton distribution pattern was investigated in the tropical and subtropical western Pacific (TSWP) and the East Sea in September, 2002, and the continental shelf of the East China Sea (C-ECS) in August, 2003. The abundance of picophytoplankton populations, Synechococcus, Prochlorococcus and picoeukaryotes were determined by flow cytometry analyses. Picophytoplankton vertical profiles and integrated abundance $(0\sim100\;m)$ were compared with these three physiochemically different regions. Variation patterns of integrated cell abundance of Synechococcus and Prochlorococcus in these three regions showed contrasting results. Synechococcus showed average abundance of $84.5X10^{10}\;cells\;m^{-2}$, in the TSWP, $305.6X10^{10}\;cells\;m^{-2}$ in the C-ECS, and $125.4X10^{10}\;cells\; m^{-2}$ in the East Sea where increasing cell concentrations were observed in the region with abundant nutrient. On the other hand, Prochlorococcus showed average abundance of $504.5X10^{10}\;cells\;m^{-2}$ in the TSWP, $33.2x10^{10}\;cells\;m^{-2}$ in the C-ECS, and $130.2X10^{10}\;cells\;m^{-2}$ in the East Sea exhibiting a distinctive pattern of increasing cell abundance in oligotrophic warm water. Although picoeukaryotes showed a similar pattern to Synechococcus, the abundance was 1/10 of Synechococcus. Synechococcus and picoeukaryotes showed ubiquitous distribution whereas Prochlorococcus generally did not appear in the C-ECS and the East Sea with low salinity environment. The average depth profiles for Synechococcus and Prochlorococcus displayed uniform abundance in the surface mixed layer with a rapid decrease below the surface mixed layer. for Prochlorococcus, a similar rapid decreasing trend was not observed below the surface mixed layer of the TSWP, but Prochlorococcus continued to show high cell abundance even down to 100 m depth. Picoeukaryotes showed uniform abundance along $0\sim100\;m$ depth in the C-ECS, and abundance maximum layer appeared in the East Sea at $20\sim30\;m$ depth.

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea II. Distribution of Particulate Organic Carbon and Nitrogen in Winter, 1995 (동해 극전선의 영양염류 순환과정 II. 1995년 동계 입자태 유기탄소 및 유기질소의 분포)

  • YANG Han-Soeb;MOON Chang-Ho;OH Seok-Jin;LEE Haeng-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.442-450
    • /
    • 1997
  • The chemical properties of water masses were investigated at 33 stations of the southeastern last Sea in February, 1995 on board R/V Tam-Yang. The water masses were not clearly distinguished due to the vortical mixing in winter. However, on the basis of the T-S and $T-O_2$ diagrams, water masses in the study area were divided into five groups (Type I, Type II, Type III, Type IV, Type V). (1) $>9.0^{\circ}C,\;>34.35\;psu,\;5.08\~5.60m\ell/\ell$ at Type I, (2) $6.0\~9.0^{\circ}C,\;34.15\~34.35\;psu,\;5.60\~5.90\;m\ell/\ell$ at Type II, (3) $4.0\~6.0^{\circ}C,\;34.00\~34.15\;psu,\;>5.90m\ell/\ell$ at Type III, (4) $1.5\~4.0^{\circ}C,\;34.00\~34.05\;psu,\;5.40\~5.90\;m\ell/\ell$ at Type IV, (5) $<1.5^{\circ}C,\;34.05\~34.07\;psu,\;4.80\~5.40\;m\ell/\ell$ at Type V. In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly with depth. The highest concentrations occurred in Type IV, while the concentrations in Type I were the lowest. The N/P ratios were less than Redfield ratio, indicating that nitrogenous nutrients were the limiting factor tor phytoplankton growth. The concentrations of POC and PON were in the range of $0.49\~20.03\;{\mu}g-at/\ell\;and\;0.09\~5.34\;{\mu}g-at/\ell$, respectively. The relatively high concentration occured in the surface layer of inner shore, showing that the concentration at each water mass followed the order Type I > Type II > Type III > Type IV > Type V, respectively. The C:N ratio in particulate organic matter was lower than the values reported in other region due to relatively high concentrations of PON in the study area. Relatively high ratios of POC to chlorophyll $\alpha$ during the study periods indicate that non-living detritus comparised most of the POC in the study area.

  • PDF