• Title/Summary/Keyword: polar coordinate system

Search Result 86, Processing Time 0.023 seconds

Analysis of Permanent Magnet Synchronous Generator for Vortex Induced Vibration Hydrokinetic Energy Applications Based on Analytical Magnetic Field Calculations

  • Choi, Jang-Young;Shin, Hyun-Jae;Choi, Jong-Su;Hong, Sup;Yeu, Tae-Kyeong;Kim, Hyung-Woo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • This paper deals with the performance analysis and estimation of the electrical parameters of a permanent magnet synchronous generator (PMSG) for hydrokinetic energy conversion applications using vortex induced vibration (VIV). The analytical solutions for the magnetic fields produced by permanent magnets (PMs) and stator winding currents are obtained using a 2D polar coordinate system and a magnetic vector potential. An analytical expression for the 2D permeance is also derived, which takes into account stator skew effects. Based on these magnetic field solutions and the 2D permeance function, electrical circuit parameters such as the backemf constant and the air-gap inductance are obtained analytically. The performances of the PMSG are investigated using the estimated electrical circuit parameters and an equivalent circuit (EC). All analytical results are validated extensively using 2D finite element (FE) analyses. Experimental measurements for parameters such as the back-emf and inductance are also presented to confirm the analyses.

Development of the Korea Ocean Prediction System

  • Suk, Moon-Sik;Chang, Kyung-Il;Nam, Soo-Yong;Park, Sung-Hyea
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2001
  • We describe here the Korea ocean prediction system that closely resembles operational numerical weather prediction systems. This prediction system will be served for real-time forecasts. The core of the system is a three-dimensional primitive equation numerical circulation model, based on ${\sigma}$-coordinate. Remotely sensed multi-channel sea surface temperature (MCSST) is imposed at the surface. Residual subsurface temperature is assimilated through the relationship between vertical temperature structure function and residual of sea surface height (RSSH) using an optimal interpolation scheme. A unified grid system, named as [K-E-Y], that covers the entire seas around Korea is used. We present and compare hindcasting results during 1990-1999 from a model forced by MCSST without incorporating RSSH data assimilation and the one with both MCSST and RSSH assimilated. The data assimilation is applied only in the East Sea, hence the comparison focuses principally on the mesoscale features prevalent in the East Sea. It is shown that the model with the data assimilation exhibits considerable skill in simulating both the permanent and transient mesoscale features in the East Sea.

  • PDF

Cell Edge SINR of Multi-cell MIMO Downlink Channel (다중 셀 MIMO 하향채널의 셀 에지 SINR)

  • Park, Ju-Yong;Kim, Ki-Jung;Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.105-117
    • /
    • 2015
  • In this paper, we consider 19 cells with the two tiers for polar-rectangular coordinates (PRCs) and provide the cell edge performance of cellular networks based on distance from cell center i.e., BS (base station). When FFR is applied(or adopted) to cell edge, it is expected that BS cooperation, or a coordinated multipoint (CoMP) multiple access strategy will further improve the system performance. We proposed a new method to evaluate the sum rate capacity of the MIMO DC of multicell system. We improve the performance of cell edge users for intercell interference cancelation in cooperative downlink multicell systems. Simulation results show that the proposed scheme outperforms the reference schemes, in terms of cell edge SINR (signal-to-interference-noise ratio) with a minimal impact on the network path loss exponent. We show 13 dB improvements in cell-edge SINR by using reuse of three relative to reuse of one. BS cooperation has been proposed to mitigate the cell edge effect.

Mathematical Models that Underlie Computer Simulation of the Trawl Doors for Mid-Water Trawls

  • Gabryuk, Victor Ivanovich;Kudakaev, Vasilii Vladimirovich
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.77-88
    • /
    • 2020
  • This paper presents the coordinate systems used for trawl doors modeling, and provides matrix equations of connection between these systems. The projections of the forces acting on the door into axes of various coordinate systems were obtained, which were used in the door equilibrium equations. Six equilibrium conditions for the door as a solid were obtained: formulas that allow for the door area in plan to be determined; its weight in water; its mass; three moment equations for determining the position of the warp and backstrops fastening points to the door with triangular and quadrangular backstrop arrangements. It was found that the moment equilibrium equations of trawl doors are generally incompatible, which was not found by any of the authors who have previously conducted research into trawl doors. Using the Kronecker-Capelli theorem, the compatibility equation is obtained. This equation includes the coordinates of the backstrop fastening points to the door, which means that these points cannot be randomly selected. The technique of determining the warp and backstrops' fastening points position to the door is described. Conditions of directional (by angle of attack) and roll (in angle of roll) stability of the doors' equilibrium are presented. The equations presented in this paper comprise a mathematical model that allows, when designing the doors, to select optimal parameters, as well as to carry out adjustments for trawling purposes to ensure the stable movement of the doors and the entire trawl system.

A Study on the Calculation Scheme of Extreme Loading Point and Nose Curves using Modified N-R and Continuation Method (수정N-R법과 연속음형법을 이용한 임계부하점 및 Nose Curve 산정기법 연구)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.712-722
    • /
    • 1992
  • Several voltage instability/collapse problems that have occurred in the electric utility industry worldwide have gained the attention of engineers and researchers of electric power systems. This paper proposes an effective calculation scheme of the extreme loading point and nose curves(P-V curves) using modified Newton-Raphson(N-R) load flow method and the Continuation Method. This method provides detail and visual information of the power system voltage profile and operating margin ro operators and planners. In this paper, a modified load flow claculation method for ill-conditioned power systems is introduced for the purpose of seeking more precise load flow solutions and nose curves, and the Continuation Method is also used as a part of the solution algorithm for the calculation of extreme loading point and nose curves. The conventional polar coordinate based N-R load flow program is modified to avoid numerical difficulties caused by the singularity of the Jacobian matrix occuring in the vicinity of extreme loading point of heavily loaded systems. Application results of the proposed method to Klos-Kerner 11-bus system and modified IEE-30-bus system are presented to assure the usefulness of the approach.

  • PDF

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Application of the Expansion Method for Spherical Harmonics for Computation of Two Center Overlap Integrals (Ⅱ) (Two Center Overlap Integrals의 계산을 위한 Spherical Hamonics 전개방법의 응용 (제2보))

  • Oh Se Woung;Ahn Sangwoon
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.125-131
    • /
    • 1979
  • A method for calculation of two center overlap integrals for a pair of Slater type orbitals was developed by Mulliken et al. In this method the spherical polar coordinates for a pair of Slater type orbitals located at two different points are required to be transformed into a spheroidal coordinate set for calculation of two center overlap integrals. A new method, the expansion method for spherical harmonics, in which Slater type orbitals, located at two different points, are expressed in a common coordinate system has been applied for computation of two center overlap integrals. The new method for computation of two center overlap integrals is required to translate Slater type orbitals centered at two different points into the reference point for computation of two center overlap integrals. This work has been expanded the expansion method for spherical harmonics for computation of two center overlap integrals to $|3s{\g}$, $|5s{\g}$ and $|5s{\g}$. Master formulas for two center overlap integrals are derived for these orbitals, using the general expansion formulas. The numerical values of the two center overlap integrals evaluated for a hypothetical NO molecule are in agreement with those of the previous works.

  • PDF

RADIAL AND AZIMUTHAL OSCILLATIONS OF HALO CORONAL MASS EJECTIONS

  • Lee, Harim;Moon, Y.J.;Nakariakov, V.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2015
  • We present the first observational detection of radial and azimuthal oscillations in full halo coronal mass ejections (HCMEs). We analyze nine HCMEs well-observed by LASCO from Feb 2011 to Jun 2011. Using the LASCO C3 running difference images, we estimated the instantaneous apparent speeds of the HCMEs in different radial directions from the solar disk center. We find that the development of all these HCMEs is accompanied with quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 mins. The amplitudes of the instant speed variations reach about a half of the projected speeds. The amplitudes are found to anti-correlate with the periods and correlate with the HCME speed, indicating the nonlinear nature of the process. The oscillations have a clear azimuthal structure in the heliocentric polar coordinate system. The oscillations in seven events are found to be associated with distinct azimuthal wave modes with the azimuthal wave number m=1 for six events and m=2 for one event. The polarization of the oscillations in these seven HCMEs is broadly consistent with those of their position angles with the mean difference of $42.5^{\circ}$. The oscillations may be connected with natural oscillations of the plasmoids around a dynamical equilibrium, or self-oscillatory processes, e.g. the periodic shedding of Alfvenic vortices. Our results indicate the need for advanced theory of oscillatory processes in CMEs.

  • PDF

Gesture Recognition by Analyzing a Trajetory on Spatio-Temporal Space (시공간상의 궤적 분석에 의한 제스쳐 인식)

  • 민병우;윤호섭;소정;에지마 도시야끼
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.157-157
    • /
    • 1999
  • Researches on the gesture recognition have become a very interesting topic in the computer vision area, Gesture recognition from visual images has a number of potential applicationssuch as HCI (Human Computer Interaction), VR(Virtual Reality), machine vision. To overcome thetechnical barriers in visual processing, conventional approaches have employed cumbersome devicessuch as datagloves or color marked gloves. In this research, we capture gesture images without usingexternal devices and generate a gesture trajectery composed of point-tokens. The trajectory Is spottedusing phase-based velocity constraints and recognized using the discrete left-right HMM. Inputvectors to the HMM are obtained by using the LBG clustering algorithm on a polar-coordinate spacewhere point-tokens on the Cartesian space .are converted. A gesture vocabulary is composed oftwenty-two dynamic hand gestures for editing drawing elements. In our experiment, one hundred dataper gesture are collected from twenty persons, Fifty data are used for training and another fifty datafor recognition experiment. The recognition result shows about 95% recognition rate and also thepossibility that these results can be applied to several potential systems operated by gestures. Thedeveloped system is running in real time for editing basic graphic primitives in the hardwareenvironments of a Pentium-pro (200 MHz), a Matrox Meteor graphic board and a CCD camera, anda Window95 and Visual C++ software environment.

Rotation invariant face recognition in a polar coordinate system using LDAr (극좌표계에서 회전에 강인한 LDAr을 이용한 얼굴 인식)

  • Oh, Jae-Hyun;Kwak, No-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.195-197
    • /
    • 2010
  • 본 논문은 기존 평행좌표를 이용하는 얼굴 영상 대신 극좌표계 변환을 이용한 얼굴 영상을 이용하여 회전에 강인한 얼굴인식 방법을 제안한다. 극좌표계 변환 방법은 얼굴의 중심부분의 한 점을 극으로 삼아 이 점을 기준으로 360도 각 방향으로 일정 길이만큼 얼굴 영상을 샘플링 하여 새로운 얼굴 영상을 제작하는 방법이다. 이 극좌표계 변환 방법을 이용해 재구성된 영상에 대해 회귀( regression )문제 해결을 위해 변형된 LDA인 LDAr(LDA for regression)을 이용하여 얼굴의 중심부분의한 점인 극을 중심으로 임의의 각도로 회전된 영상의 회전 정도를 추정하여 이를 정규화 시키는 방법을 통해 얼굴 인식의 인식률을 향상시키고자 한다. LDAr은 LDA의 기본개념인 각 클래스 간 떨어진 정도를 최대화하는 것이 목적으로 클래스간 분산과 클래스내 분산의 비율을 최대화 하는 방법을 응용하여 이를 회귀문제에 적용할 수 있게 변형을 한 것이다. 즉, LDAr은 목표값(target)의 차이가 큰 샘플들과 목표값의 차이가 작은 샘플들 간의 거리의 비율을 최대화 하는 것을 목적으로 하게 된다. 제안된 방법을 Yale데이터에 적용하여 임의의 각도로 회전시킨 영상에 대해 회전 각도를 정확히 찾아내는 것을 확인할 수 있었다.

  • PDF