• Title/Summary/Keyword: polar climate variation

Search Result 47, Processing Time 0.031 seconds

다중 GPS를 이용한 변위거동 연구

  • Shon, Ho-Woong;Lee, Kang-Won;Park, Eun-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.95-100
    • /
    • 2009
  • Global warming melts polar ice, changes ocean currents, creates variation of local climate, and inundates low-altitude regions resulting in disasters to mankind. Accordingly, developed countries including U.S.A. and U.K. spend great amounts of efforts and money to plan and manage research activities on polar ice which is regarded as a key indicator of climate change. The proposed research aims to provide basic information for chasing and monitoring the melting phenomena of polar ice through multiple GPS to enhance the GPS quality.

  • PDF

Academic Development Status of Climate Dynamics in Korean Meteorological Society (한국기상학회 기후역학 분야 학술 발전 현황)

  • Soon-Il An;Sang-Wook Yeh;Kyong-Hwan Seo;Jong-Seong Kug;Baek-Min Kim;Daehyun Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

Long-term Variability of Sea Surface Temperature in the East China Sea: A Review (동중국해 표층수온의 장기 변동성: 종설)

  • Lee, Jae Hak;Kim, Cheol-Ho
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • The long-term variability of sea surface temperature in the East China Sea was reviewed based mainly on published literatures. Though the quantitative results are not the same, it is generally shown that sea surface temperature is increasing especially in recent years with the rate of increase about $0.03^{\circ}C$/year. Other meaningful results presented in the literatures is that the difference of water properties between layers upper and lower than the thermocline in summer shows an increasing trend both in temperature and salinity, suggesting that the stratification has been intensified. As a mechanism by which to evaluate the wintertime warming trend in the region, the weakening of wind strength, which is related to the variation of sea level pressure and atmospheric circulation in the western North Pacific and northern Asian continent, is suggested in the most of related studies.

Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Shin, Jung-Il;Hong, Soon-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2013
  • Baton Peninsula, where Sejong station is located, mainly covered with snow and vegetation. Because this area is sensitive to climate change, monitoring of surface variation is important to understand climate change on the polar region. Due to the inaccessibility, the remote sensing is useful to continuously monitor the area. The objectives of this research are 1) map classification of land-cover types in the Barton Peninsular around King Sejong station and 2) grasp distribution of vegetation species in classified area. A KOMPSAT-2 multispectral satellite image was used to classify land-cover types and vegetation species. We performed classification with hierarchical procedure using KOMPSAT-2 satellite image and ground reference data, and the result is evaluated for accuracy as well. As the results, vegetation and non-vegetation were clearly classified although species shown lower accuracies within vegetation class.

Variation of Nitrate Concentrations and δ15N Values of Seawater in the Drake Passage, Antarctic Ocean (남극해 드레이크해협 해수의 질산염 농도와 질소동위원소 값의 변화)

  • Jang, Yang-Hee;Khim, Boo-Keun;Shin, Hyoung-Chul;Sigman, Daniel M.;Wang, Yi;Hong, Chang-Su
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.407-418
    • /
    • 2008
  • Seawater samples were collected at discrete depths from five stations across the polar front in the Drake Passage (Antarctic Ocean) by the $20^{th}$ Korea Antarctic Research Program in December, 2006. Nitrate concentrations of seawater increase with depth within the photic zone above the depth of Upper Circumpolar Deep Water (UCDW). In contrast, ${\delta}^{15}N$ values of seawater nitrate decrease with depth, showing a mirror image to the nitrate variation. Such a distinct vertical variation is mainly attributed to the degree of nitrate assimilation by phytoplankton as well as organic matter degradation of sinking particles within the surface layer. The preferential $^{14}{NO_3}^-$ assimilation by the phytoplankton causes $^{15}{NO_3}^-$ concentration to become high in a closedsystem surface-water environment during the primary production, whereas more $^{14}{NO_3}^-$ is added to the seawater during the degradation of sinking organic particles. The water-mass mixing seems to play an important role in the alteration of ${\delta}^{15}N$ values in the deep layer below the UCDW. Across the polar front, nitrate concentrations of surface seawater decrease and corresponding ${\delta}^{15}N$ values increase northward, which is likely due to the degree of nitrate utilization during the primary production. Based on the Rayleigh model, the calculated ${\varepsilon}$ (isotope effect of nitrate uptake) values between 4.0%o and 5.8%o were validated by the previously reported data, although the preformed ${\delta}^{15}{{NO_3}^-}_{initial}$ value of UCDW is important in the calculation of ${\varepsilon}$ values.

The Warm Eddy in the East Korean Bight

  • Shin, Chang-Woong;Kim, Cheol-Soo;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Sea surface temperature derived from infrared images of NOAA satellites showed a warm eddy in the East Korean Bight(EKB) or Donghan Man during the winter 1997${\sim}$2000. To describe the warm eddy in the EKB, hydrographic data collected in 1934 and 1936 were also analyzed. The center of the warm eddy was located at about $39^{\circ}N$ and $129^{\circ}E$. The temperature and salinity of the eddy was about $4.0^{\circ}C$ and 34.0 psu, respectively, at 100m depth. The eddy rotated anticyclonically with a geostrophic current speed of about 20 cm/s. The mean state calculated from the data of 1922${\sim}$1960 showed the existence of a warm eddy over the EKB in winter. The eddy persists until late spring, and disappears from the previous location in summertime, only to be seen again in autumn.

  • PDF

Physical Oceanographic Characteristics between Hawaii and Chuuk Observed in Summer of 2006 and 2007 (2006년과 2007년 여름에 관측한 Hawaii-Chuuk 사이의 물리특성)

  • Shin, Chang-Woong;Kim, Dong-Guk;Jeon, Dong-Chull;Kim, Eung
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.371-383
    • /
    • 2011
  • To investigate the physical characteristics and variations of oceanic parameters in the tropical central North Pacific, oceanographic surveys were carried out in summer of 2006 and 2007. The survey periods were classified by Oceanic Ni$\tilde{n}$o Index as a weak El Ni$\tilde{n}$o in 2006 and a medium La Ni$\tilde{n}$a in 2007. The survey instruments were used to acquire data on CTD (Conductivity Temperature and Depth), XBT (Expendable Bathythermograph), and TSG (Thermosalinograph). The dominant temporal variation of surface temperature was diurnal. The diurnal variation in 2007, when the La Ni$\tilde{n}$a weather pattern was in place, was stronger than that in 2006. Surface salinity in 2006 was affected by a northwestward branch of North Equatorial Current, which implies that the El Ni$\tilde{n}$o affects surface properties in the North Equatorial Current region. Two salinity minimum layers existed at stations east of Chuuk in both year's observations. The climatological vertical salinity section along $180^{\circ}E$ shows that the two salinity minimum layers exist in $2^{\circ}N{\sim}12^{\circ}N$ region, consistent with our observations. Analysis of isopycnal lines over the salinity section implies that the upper salinity minimum layer is from intrusion of the upper part of North Pacific Intermediate Water into the lower part of South Pacific Subtropical Surface Water and the lower salinity minimum layer is from Antarctic Intermediate Water.

Assessment of Climate Variability over East Asia-Korea for 2015/16 Winter (2015/16 겨울 동아시아-한반도 기후 특성 분석)

  • Jeong, Jee-Hoon;Park, Tae-Won;Choi, Ja-Hyun;Son, Seok-Woo;Song, Kanghyun;Kug, Jong-Seong;Kim, Baek-Min;Kim, Hyun-kyung;Yim, So-Young
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.337-345
    • /
    • 2016
  • This paper is to assess the state of climate over East Asia and Korea during 2015/16 winter. There was a distinct intraseasonal climate variation during the period: the record-breaking warmth in December 2015 vs. strong cold surge outbreaks in January 2016. It is suggested that the anomalous warming in December 2015 was contributed by an intensification of Kuroshio anticyclone associated with 2015/16 El $Ni{\tilde{n}}o$ and polar vortex intensification. In January 2016, a strong cold surge outbroke over East Asia bringing severe cold more than two weeks. The cold surge was a blocking-type one which followed extremely negative AO developed from early January. It was suggested that the intensification of cold surge might be contributed indirectly by a strong Arctic warming and MJO activity during the period.

TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment) Program (태평양-인도양 해양순환 연구 프로그램)

  • Jeon, Dongchull;Kim, Eung;Shin, Chang Woong;Kim, Cheol-Ho;Kug, Jong Seong;Lee, Jae Hak;Lee, Youn-Ho;Kim, Suk Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.259-272
    • /
    • 2013
  • One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The 'Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX)' is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1) to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2) to understand the large-scale oceanic-climatic variation including El Nino-Southern Oscillation (ENSO)/Warm Pool/Pacific Decadal Oscillation (PDO)/Indian Ocean Dipole (IOD), and 3) to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.