• Title/Summary/Keyword: polar cap

Search Result 33, Processing Time 0.019 seconds

IONOSPHERE-THERMOSPHERE INTERACTIONS BASED ON NCAR-TIEGCM: THE INFLUENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF)-DEPENDENT IONOSPHERIC CONVECTION ON THE HIGH-LATITUDE LOWER THERMOSPHERIC WIND (NCAR-TIEGCM을 이용한 이온권-열권의 상호작용 연구: 행성간 자기장(IMF)에 의존적인 이온권 플라즈마대류의 고위도 하부 열권 바람에 대한 영향)

  • 곽영실;안병호;원영인
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.1
    • /
    • pp.11-28
    • /
    • 2004
  • To better understand how high-latitude electric fields influence thermospheric dynamics, winds in the high-latitude lower thermosphere are studied by using the Thermosphere-ionosphere Electrodynamics General Circulation Model developed by the National Conte. for Atmospheric Research (NCAR-TIEGCM). The model is run for the conditions of 1992-1993 southern summer. The association of the model results with the interplanetary magnetic field(IMF) is also examined to determine the influences of the IMF-dependent ionospheric convection on the winds. The wind patterns show good agreement with the WINDII observations, although the model wind speeds are generally weaker than the observations. It is confirmed that the influences of high-latitude ionospheric convection on summertime thermospheric winds are seen down to 105 km. The difference wind, the difference between the winds for IMF$\neq$O and IMF=0, during negative IMF $B_y$ shows a strong anticyclonic vortex while during positive IMF $B_y$ a strong cyclonic vortex down to 105 km. For positive IMF $B_z$ the difference winds are largely confined to the polar cap, while for negative IMF B, they extend down to subauroral latitudes. The IMF $B_z$ -dependent diurnal wind component is strongly correlated with the corresponding component of ionospheric convection velocity down to 108 km and is largely rotational. The influence of IMF by on the lower thermospheric summertime zonal-mean zonal wind is substantial at high latitudes, with maximum wind speeds being $60\;ms^-1$ at 130 km around $77^{\circ}$ magnetic latitude.

Chemical weathering in King George Island, Antarctica

  • Jeong, Gi-Young
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.66-66
    • /
    • 2003
  • King George island, Antarctica, is mostly covered by ice sheet and glaciers, but the land area is focally exposed for several thousand years after deglaciation. For a mineralogical study of chemical weathering in the polar environment, glacial debris was sampled at the well-developed patterned ground which was formed by long periglaclal process. As fresh equivalents, recently exposed tills were sampled at the base of ice cliff of outlet glaciers and at the melting margin of ice cap together with fresh bedrock samples. Fresh tills are mostly composed of quartz, plagioclase, chlorite, and illite, but those derived from hydrothermal alteration zone contain smectite and illite-smectite. In bedrocks, chlorite was the major clay minerals in most samples with minor illite near hydrothermal alteration zone and interstratified chlorite-smectite in some samples. Smectite closely associated with eolian volcanic glass was assigned to alteration in their source region. Blocks with rough surface due to chemical disintegration showed weathering rinds of several millimeter thick. Comparision between inner fresh and outer altered zones did not show notable change in clay mineralogy except dissolution of calcite and some plagioclase. Most significant weathering was observed in the biotite flakes, eolian volcanic glass, sulfides, and carbonates in the debris. Biotite flakes derived from granodiorite were altered to hydrobiotite and vermiculite of yellow brown color. Minor epitactic kaolinite and gibbsite were formed in the cleaved flakes of weathered biotite. Pyrite was replaced by iron oxides. Calcite was congruently dissolved. Volcanic glass of basaltic andesite composition showed alteration rim of several micrometer thick or completely dissolved leaving mesh of plagioclase laths. In the alteration rim, Si, Na, Mg, and Ca were depleted, whereas Al, Ti, and Fe were relatively enriched. Mineralization of lichen and moss debris is of much interest. They are rich of A3 and Si roughly in the ratio of 2:1 to 3:1 typical of allophane. In some case, Fe and Ti are enriched in addition to Al and Si. Transmission electron microscopy of the samples rich of volcanic glass showed abundant amorphous aluminosilicates, which are interpreted as allophane. Chemical weathering in the King George Island is dominated by the leaching of primary phyllosilicates, carbonates, eolian volcanic glass, and minor sulfides. Authigenesls of clay minerals is less active. Absence of a positive evidence of significant authigenic smectite formation suggests that its contribution to the clay mineralogy of marine sediments are doubtful even near the maritime Antarctica undergoing a more rapid and intenser chemical weathering under more humid and milder climate.

  • PDF

Surface Reflectance Retrieval from Satellite Observation (OMI) over East Asia Using Minimum Reflectance Method (위성관측 오존계에서 최소 반사도법을 이용하여 동아시아 지역의 지면반사도 산출)

  • Shin, Hee-Woo;Yoo, Jung-Moon;Lee, Kwon-Ho
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.212-226
    • /
    • 2019
  • This study derived spectral Lambertian Equivalent Reflectance (LER) over East Asia from the observations of Ozone Monitoring Instrument (OMI) onboard polar-orbit satellite Aura. The climatological (October 2004-September 2007) LER values were compared with the surface reflectance products of OMI or MODerate resolution Imaging Spectroradiometer (MODIS) in terms of the atmosphere-environment variables as follows: wavelength (UV, visible), surface properties (land, ocean), and cloud filtering. Four kinds of LER outputs in the UV and visible region (328-500 nm) were retrieved based on the averages of lowest (1, 5, and 10%) surface reflectance values as well as the minimum reflectance. The average of the lowest 10% among them was in best agreement with the OMI product: correlation coefficient (0.88), RMSE (1.0%) and mean bias (-0.3%). The 10% average and OMI LER values over ocean were 2% larger in UV than in visible, while the values over land were 1% smaller. The LER variability on the wavelength and surface property was highest (~3%) in the condition of both land and visible, particularly in the ice-cap and desert regions. The minimum reflectance values over the oceanic and inland sample areas overestimated the MODIS product by 1.4%. This high-resolution MODIS observations were effective in removing cloud contamination. The relative errors of the 10% average to MODIS were smaller (-0.6%) over ocean but larger (1.5%) over land than those of the OMI product to MODIS. The reduced relative error in the OMI product over land may result from additional cloud filtering using the Landsat data. This study will be useful when retrieveing the surface reflectance from geostationary-orbit environmental satellite (e.g., Geostationary Environment Monitoring Spectrometer; GEMS).