• Title/Summary/Keyword: poisson regression models

Search Result 96, Processing Time 0.028 seconds

Accident Models of Circular Intersections by Type in Korea (사고유형에 따른 원형교차로 사고모형)

  • Han, Su-San;Kim, Kyung-Hwan;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.103-110
    • /
    • 2011
  • This study deals with the traffic accidents by type. The objectives are to analyze the characteristics of 2 accident types, and to develop the models by type. In pursuing the above, this paper gives particular attentions to testing the differences between by type two groups, and developing the models (Poisson and negative binomial regressions) using the data of domestic circular intersections. The main results are as follows. First, the number of accidents in vehicle vehicle was analyzed to account for about 73.41% of total and to be higher than vehicle people. Second, two Poisson models and two negative binomial models which were all statistically significant were developed using vehicle people accidents and vehicle vehicle accidents as dependant variables. Finally, the traffic volume as common variable was selected in the models, and right-turn slip lane, speed hump, the number of driveways, the number of pedestrian crossings as specific variables of the models were selected.

Rear-end Accident Models of Rural Area Signalized Intersections in the Cases of Cheongju and Cheongwon (청주.청원 지방부 신호교차로의 후미추돌 사고모형)

  • Park, Byoung-Ho;In, Byung-Chul
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2009
  • This study deals with the rear-end collisions in the rural aiea. The objectives of this study are 1) to analyze the characteristics of rear-end accidents of signalized intersections, and 2) to develop the accident models for Cheongju-Cheongwon. In pursing the above, this study gives the particular attentions to comparing the characters of urban and rural area. In this study, the dependent variables are the number of accidents and value of EPDO(equivalent property damage only), and independent variables are the traffic volumes and geometric elements. The main results analyzed are the followings. First, the statistical analyses show that the Poisson accident model using the number of accident as a dependant variable are statistically significant and the negative binomial accident model using the value of EPDO are statistically significant. Second, the independent variables of Poisson model are analyzed to be the ratio of high-occupancy vehicles, total traffic volume and the sum of exit/entry, and those of negative binomial regression are the main road width, total traffic volume and the ratio of high-occupancy vehicles. Finally, the specific independent variables to the rural area are the main road width, the ratio of high occupancy vehicle, and the sum exit/entry.

  • PDF

Power Estimation and Follow-Up Period Evaluation in Korea Radiation Effect and Epidemiology Cohort Study (원전 코호트 연구의 적정 대상규모와 검정력 추정)

  • Cho, In-Seong;Song, Min-Kyo;Choi, Yun-Hee;Li, Zhong-Min;Ahn, Yoon-Ok
    • Journal of Preventive Medicine and Public Health
    • /
    • v.43 no.6
    • /
    • pp.543-548
    • /
    • 2010
  • Objectives: The objective of this study was to calculate sample size and power in an ongoing cohort, Korea radiation effect and epidemiology cohort (KREEC). Method: Sample size calculation was performed using PASS 2002 based on Cox regression and Poisson regression models. Person-year was calculated by using data from '1993-1997 Total cancer incidence by sex and age, Seoul' and Korean statistical informative service. Results: With the assumption of relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, sample size calculation was 405 events based on a Cox regression model. When the relative risk was assumed to be 1.5 then number of events was 170. Based on a Poisson regression model, relative risk=1.3, exposure:non-exposure=1:2 and power=0.8 rendered 385 events. Relative risk of 1.5 resulted in a total of 157 events. We calculated person-years (PY) with event numbers and cancer incidence rate in the nonexposure group. Based on a Cox regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, 136 245PY was needed to secure the power. In a Poisson regression model, with relative risk=1.3, exposure:non-exposure=1:2 and power=0.8, person-year needed was 129517PY. A total of 1939 cases were identified in KREEC until December 2007. Conclusions: A retrospective power calculation in an ongoing study might be biased by the data. Prospective power calculation should be carried out based on various assumptions prior to the study.

Developing the Traffic Accident Severity Models by Accident Type (사고유형에 따른 교통사고 심각도 모형 개발)

  • Kim, Kyung-Hwan;Park, Byung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.118-123
    • /
    • 2011
  • This study deals with the traffic accidents of the arterial link sections. The purpose is to comparatively analyze the characteristics and models by accident type using the data of 24 arterial links in Cheongju. In pursuing the above, this study gives particular emphasis to modeling such the accidents as the side-right-angle collision, rear-end collision and side-swipe collision. The main results are the followings. First, six accident models are developed, which are all analyzed to be statistically significant. Second, the models are comparatively evaluated using the common and specific variables by accident type.

A Bayesian joint model for continuous and zero-inflated count data in developmental toxicity studies

  • Hwang, Beom Seuk
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.239-250
    • /
    • 2022
  • In many applications, we frequently encounter correlated multiple outcomes measured on the same subject. Joint modeling of such multiple outcomes can improve efficiency of inference compared to independent modeling. For instance, in developmental toxicity studies, fetal weight and number of malformed pups are measured on the pregnant dams exposed to different levels of a toxic substance, in which the association between such outcomes should be taken into account in the model. The number of malformations may possibly have many zeros, which should be analyzed via zero-inflated count models. Motivated by applications in developmental toxicity studies, we propose a Bayesian joint modeling framework for continuous and count outcomes with excess zeros. In our model, zero-inflated Poisson (ZIP) regression model would be used to describe count data, and a subject-specific random effects would account for the correlation across the two outcomes. We implement a Bayesian approach using MCMC procedure with data augmentation method and adaptive rejection sampling. We apply our proposed model to dose-response analysis in a developmental toxicity study to estimate the benchmark dose in a risk assessment.

Analysis of Failutr Count Data Based on NHPP Models (NHPP모형에 기초한 고장 수 자료의 분석)

  • Kim, Seong-Hui;Jeong, Hyang-Suk;Kim, Yeong-Sun;Park, Jung-Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.395-400
    • /
    • 1997
  • An important quality characteristic of a software reliability.Software reliablilty growh models prvied the tools to evluate and moniter the reliabolty growth behavior of the sofwate during the testing phase Therefore failure data collected during the testing phase should be continmuosly analyzed on the basis of some selected software reliability growth models.For the cases where nonhomogeneous Poisson proxess models are the candiate models,we suggest Poisson regression model, which expresses the relationship between the expeted and actual failures counts in disjonint time intervals,for analyzing the failure count data.The weighted lest squares method is then used to-estimate the paramethers in the parameters in the model:The resulting estimators are equivalent to the maximum likelihood estimators. The method is illustrated by analyzing the failutr count data gathered from a large- scale switchong system.

  • PDF

Forecasting of the COVID-19 pandemic situation of Korea

  • Goo, Taewan;Apio, Catherine;Heo, Gyujin;Lee, Doeun;Lee, Jong Hyeok;Lim, Jisun;Han, Kyulhee;Park, Taesung
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.11.1-11.8
    • /
    • 2021
  • For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting models. Governments and legislative bodies rely on insights from prediction models to suggest new policies and to assess the effectiveness of enforced policies. Therefore, access to accurate outbreak prediction models is essential to obtain insights into the likely spread and consequences of infectious diseases. The objective of this study is to predict the future COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local linear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning based long short-term memory models (LSTM) and tree based gradient boosting machine (GBM). After prediction, model performance comparison was evelauated using relative mean squared errors (RMSE) for two sets of train (January 20, 2020-December 31, 2020 and January 20, 2020-January 31, 2021) and testing data (January 1, 2021-February 28, 2021 and February 1, 2021-February 28, 2021) . Except for segmented Poisson model, the other models predicted a decline in the daily confirmed cases in the country for the coming future. RMSE values' comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, performed well in the forecasting of the pandemic situation of the country. A good understanding of the epidemic dynamics would greatly enhance the control and prevention of COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases since this year, these results could help in the pandemic response by informing decisions about planning, resource allocation, and decision concerning social distancing policies.

Fit of the number of insurance solicitor's turnovers using zero-inflated negative binomial regression (영과잉 음이항회귀 모형을 이용한 보험설계사들의 이직횟수 적합)

  • Chun, Heuiju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1087-1097
    • /
    • 2017
  • This study aims to find the best model to fit the number of insurance solicitor's turnovers of life insurance companies using count data regression models such as poisson regression, negative binomial regression, zero-inflated poisson regression, or zero-inflated negative binomial regression. Out of the four models, zero-inflated negative binomial model has been selected based on AIC and SBC criteria, which is due to over-dispersion and high proportion of zero-counts. The significant factors to affect insurance solicitor's turnover found to be a work period in current company, a total work period as financial planner, an affiliated corporation, and channel management satisfaction. We also have found that as the job satisfaction or the channel management satisfaction gets lower as channel management satisfaction, the number of insurance solicitor's turnovers increases. In addition, the total work period as financial planner has positive relationship with the number of insurance solicitor's turnovers, but the work period in current company has negative relationship with it.

Sample size calculations for clustered count data based on zero-inflated discrete Weibull regression models

  • Hanna Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • In this study, we consider the sample size determination problem for clustered count data with many zeros. In general, zero-inflated Poisson and binomial models are commonly used for zero-inflated data; however, in real data the assumptions that should be satisfied when using each model might be violated. We calculate the required sample size based on a discrete Weibull regression model that can handle both underdispersed and overdispersed data types. We use the Monte Carlo simulation to compute the required sample size. With our proposed method, a unified model with a low failure risk can be used to cope with the dispersed data type and handle data with many zeros, which appear in groups or clusters sharing a common variation source. A simulation study shows that our proposed method provides accurate results, revealing that the sample size is affected by the distribution skewness, covariance structure of covariates, and amount of zeros. We apply our method to the pancreas disorder length of the stay data collected from Western Australia.

The Development of Traffic Accident Severity Evaluation Models for Elderly Drivers (고령운전자 교통안전성 평가모형 개발)

  • Kim, Tae-Ho;Lee, Ki-Young;Choi, Yoon-Hwan;Park, Je-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.118-127
    • /
    • 2009
  • This study tries to develop model in order to assess personal factors of senior traffic accidents that are widely recognized as one of the social problems. For the current practice. it gathers data (Simulation & Questionnaire Survey) of KOTSA and conducts Poisson and Negative Binomial Regression Analysis to develop traffic accident severity model. The results show that elderly drivers' accidents are mainly affected by attentiveness selection, velocity prediction ability and attentiveness distribution ability in a positive(+) way. Second, non-senior drivers' accidents are also positively(+) influenced by attentiveness selection, velocity prediction, distance perception, attentiveness distribution ability and attentiveness diversion ability. Therefore, influencing factors of senior and non-senior drivers to vehicle accidents are different. This eventually poses a indication that preliminary education for car accident prevention should be implemented based up[n the distinction between senior drivers and non-senior drivers.

  • PDF