• Title/Summary/Keyword: poisson regression models

Search Result 96, Processing Time 0.031 seconds

Models for forecasting food poisoning occurrences (식중독 발생 예측모형)

  • Yeo, In-Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1117-1125
    • /
    • 2012
  • The occurrence of food poisoning is usually modeled by meteorological variables like the temperature and the humidity. In this paper, we investigate the relationship between food poisoning occurrence and climate variables in Korea and compare Poisson regression and autoregressive moving average model to select the forecast model. We confirm that lagged climate variables affect the food poisoning occurrences. However, it turns out that, from the viewpoint of the prediction, the number of previous occurrences is more influential to the current occurrence than meteorological variables and Poisson regression model is less reliable.

Analysis of Accident Characteristics and Development of Accident Models in the Signalized Intersections of Cheongju and Cheongwon (지방부 신호교차로 사고특성분석 및 모형개발 (청주.청원을 중심으로))

  • Park, Byung-Ho;Yoo, Doo-Seon;Yang, Jeong-Mo;Lee, Young-Min
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.35-46
    • /
    • 2008
  • The purposes of this study are to analyze the characteristics and to develop the models of traffic accidents. In pursuing the above, this study gives particular attentions to developing the models(multiple linear, poisson and negative binomial regression) using the data of Cheongju and Cheongwon signalized intersections. The main results analyzed are as follows. First, the accident characteristics of rural area were defined by factor. Second, 4 accident models which are all statistically significant were developed. Finally, such the variables as $X_2$ and $X_{11}$ were evaluated to be specific variables which reflect the characteristics of rural area.

Traffic Crash Prediction Models for Expressway Ramps (고속도로 연결로의 교통사고예측모형 개발)

  • Choi, Yoon-Hwan;Oh, Young-Tae;Choi, Kee-Choo;Lee, Choul-Ki;Yun, Il-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.133-143
    • /
    • 2012
  • PURPOSES: Using the collected data for crash, traffic volume, and design elements on ramps between 2007 and 2009, this research effort was initiated to develop traffic crash prediction models for expressway ramps. METHODS: Three negative binomial regression models and three zero-inflated negative binomial regression models were developed for individual ramp types, including direct, semi-direct and loop, respectively. For validating the developed models, authors compared the estimated crash frequencies with actual crash frequencies of twelve randomly selected interchanges, the ramps of which have not been used for model developing. RESULTS: The results show that the negative binomial regression models for direct, semi-direct and loop ramps showed 60.3%, 63.8% and 48.7% error rates on average whereas the zero-inflated negative binomial regression models showed 82.1%, 120.4% and 57.3%, respectively. CONCLUSIONS: Conclusively, the negative binomial regression models worked better in traffic crash prediction than the zero-inflated negative binomial regression models for estimating the frequency of traffic accidents on expressway ramps.

A Study for Influence of Sun Glare Effect on Traffic Safety at Tunnel Hood (직광에 의한 눈부심 현상이 터널 출구부 안전성에 미치는 영향 연구)

  • Kim, Youngrok;Kim, Sangyoup;Choi, Jaisung;Lee, Daesung
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.103-110
    • /
    • 2012
  • PURPOSES : In Korea, over 70 percent of the land consists of mountainous and rolling area. Thus, tunnels continue its upward trend as road network are extended. In these circumstances, the importance of tunnel has been increased nowadays and then its safety investigation and research should be performed. This study is focus on confirming and improving the safety of tunnel. On tunnel hood, sunglare effect can irritate driver's behavior instantly and this can result in incident. METHODS : The study of this phenomenon is rarely conducted in domestic and foreign papers, so there is no proper measure for this. This study analyzes the driving environment of the effect of sunglare effect on tunnel hood. RESULTS : Traffic accidents stem from complex set of factors. This study build the Traffic Accident Prediction Models to find out the effect of sunglare effect on tunnel's hood. The independent variables are traffic volume, geometric design of road, length of tunnel and road side environment. Using these variables, this model estimates accident frequency on tunnel hood by Poisson regression model and Negative binomial regression model. Although Poisson regression model have more proper goodness of fit than Negative binomial regression model, Poisson regression model has overdipersion problem. So the Negative binomial regression model is used in this analysis. CONCLUSIONS : Consequently, the model shows that sunglare effect can play a role in driving safety on tunnel hood. As a result, the information of sunglare effect should be noticed ahead of tunnel hood so this can prevent drivers from being in hazard situation.

Statistical Analysis of K-League Data using Poisson Model

  • Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.775-783
    • /
    • 2012
  • Several statistical models for bivariate poisson data are suggested and used to analyze 2011 K-league data. Our interest is composed of two purposes: The first purpose is to exploit potential attacking and defensive abilities of each team. Particular, a bivariate poisson model with diagonal inflation is incorporated for the estimation of draws. A joint model is applied to estimate an association between poisson distribution and probability of draw. The second one is to investigate causes on scoring time of goals and a regression technique of recurrent event data is applied. Some related future works are suggested.

Traffic Accident Models of 3-Legged Signalized Intersections in the Case of Cheongju (3지 신호교차로의 교통사고 발생모형 - 청주시를 사례로 -)

  • Park, Byung-Ho;Han, Sang-Uk;Kim, Tae-Young
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.94-99
    • /
    • 2009
  • This study deals with the traffic accidents at the 3-legged signalized intersections in Cheongu. The goals are to analyze the geometric, traffic and operational conditions of intersections and to develop a various functional forms that predict the accidents. The models are developed through the correlation analysis, the multiple linear, the multiple nonlinear, Poisson and negative binomial regression analysis. In this study, two multiple linear, two multiple nonlinear and two negative binomial regression models were calibrated. These models were all analyzed to be statistically significant. All the models include 2 common variables(traffic volume and lane width) and model-specific variables. These variables are, therefore, evaluated to be critical to the accident reduction of Cheongju.

A Development of Models for Analyzing Traffic Accident Injury Severity for Signalized Intersections (신호교차로 안전성 향상을 위한 사고심각도 모형개발)

  • Ha, Oh-Keun;Hu, Ec;Won, Jai-Mu
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.65-71
    • /
    • 2008
  • As the interest in traffic safety has been increasing recently, social movement is being made to reduce the number of traffic accidents and the view on improving the mobility of the existing roads is being converted into on establishing traffic safety as a priority. The increase of traffic accidents related to an intersection in a state that traffic accidents are decreasing overall may suggests the necessity to investigate the specific causes. In addition, we have to consider them when establishing the measures against traffic accidents in a intersection by investigating and analyzing the influences and factors that may affect traffic accidents. To induce the accident severity model, we collected the factors that affect accidents and then applied the Poisson Regression Model among nonlinear regression analysis by verifying the distribution of variables. As a result of the analysis, it turned out that the volume of traffic on main roads, the right turn ratio on sub-roads, the number of ways out on sub-roads, the number of exclusive roads for a left turn, the signals for a right turn on main roads, and an intersect angle were the factors that affect the accident severity.

A Study on Impact of Factors Influencing Maritime Freight Rates Using Poisson and Negative Binomial Regression Analysis on Blank Sailings of Shipping Companies (포아송 및 음이항 회귀분석을 이용한 해상운임 결정요인이 해운선사의 블랭크 세일링에 미치는 영향 분석 연구)

  • Won-Hyeong Ryu;Hyung-Sik Nam
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.62-77
    • /
    • 2024
  • In the maritime shipping industry, imbalance between supply and demand has persistently increased, leading to the utilization of blank sailings by major shipping companies worldwide as a key means of flexibly adjusting vessel capacity in response to shipping market conditions. Traditionally, blank sailings have been frequently implemented around the Chinese New Year period. However, due to unique circumstances such as the global pandemic starting in 2020 and trade tensions between the United States and China, shipping companies have recently conducted larger-scale blank sailings compared to the past. As blank sailings directly impact freight transport delays, they can have negative repercussions from perspectives of both businesses and consumers. Therefore, this study employed Poisson regression models and negative binomial regression models to analyze the influence of maritime freight rate determinants on shipping companies' decisions regarding blank sailings, aiming to proactively address potential consequences. Results of the analysis indicated that, in Poisson regression analysis for 2M, significant variables included global container shipping volume, container vessel capacity, container ship scrapping volume, container ship newbuilding index, and OECD inflation. In negative binomial regression analysis, ocean alliance showed significance with global container shipping volume and container ship order volume, the alliance with container ship capacity and interest rates, non-alliance with international oil prices, global supply chain pressure index, container ship capacity, OECD inflation, and total alliance with container ship capacity and interest rates.

Analysis of Disaster Occurrences in Mongolia Based on Climatic Variables (기후변수를 기반으로 한 몽골 재해발생 분석)

  • Da Hye Lee;Onon-Ujin Otgonbayar;In Hong Chang
    • Journal of Integrative Natural Science
    • /
    • v.17 no.3
    • /
    • pp.93-103
    • /
    • 2024
  • Mongolia's diverse geographical landscape and harsh climate make it particularly susceptible to various natural disasters, including forest fires, heavy rains, dust storms, and heavy snow. This study aims to explore the relationships between key climatic variables and the frequency of these disasters. We collected monthly data from January 2022 to April 2024, encompassing average temperature, temperature variability (absolute temperature difference), average humidity, and precipitation across the capitals of Mongolia's 21 provinces and the capital city Ulaanbaatar. The data were analyzed using multiple statistical models: Linear Regression, Poisson Regression, and Negative Binomial Regression. Descriptive statistics provided initial insights into the variability and distribution of the climatic variables and disaster occurrences. The models aimed to identify significant predictors and quantify their impact on disaster frequencies. Our approach involved standardizing the predictor variables to ensure comparability and interpretability of the regression coefficients. Our findings indicate that climatic variables significantly affect the frequency of natural disasters. The Negative Binomial Regression model was particularly suitable for our data, which exhibited overdispersion common characteristic in count data such as disaster occurrences. Understanding these relationships is crucial for developing targeted disaster management strategies and policies to mitigate the adverse effects of climate change on Mongolian communities. This research provides valuable insights into how climatic changes impact disaster occurrences, offering a foundation for informed decision-making and policy development to enhance community resilience.

Ensemble variable selection using genetic algorithm

  • Seogyoung, Lee;Martin Seunghwan, Yang;Jongkyeong, Kang;Seung Jun, Shin
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.6
    • /
    • pp.629-640
    • /
    • 2022
  • Variable selection is one of the most crucial tasks in supervised learning, such as regression and classification. The best subset selection is straightforward and optimal but not practically applicable unless the number of predictors is small. In this article, we propose directly solving the best subset selection via the genetic algorithm (GA), a popular stochastic optimization algorithm based on the principle of Darwinian evolution. To further improve the variable selection performance, we propose to run multiple GA to solve the best subset selection and then synthesize the results, which we call ensemble GA (EGA). The EGA significantly improves variable selection performance. In addition, the proposed method is essentially the best subset selection and hence applicable to a variety of models with different selection criteria. We compare the proposed EGA to existing variable selection methods under various models, including linear regression, Poisson regression, and Cox regression for survival data. Both simulation and real data analysis demonstrate the promising performance of the proposed method.