• Title/Summary/Keyword: poisson regression

Search Result 250, Processing Time 0.029 seconds

A Study on the Power Comparison between Logistic Regression and Offset Poisson Regression for Binary Data

  • Kim, Dae-Youb;Park, Heung-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.537-546
    • /
    • 2012
  • In this paper, for analyzing binary data, Poisson regression with offset and logistic regression are compared with respect to the power via simulations. Poisson distribution can be used as an approximation of binomial distribution when n is large and p is small; however, we investigate if the same conditions can be held for the power of significant tests between logistic regression and offset poisson regression. The result is that when offset size is large for rare events offset poisson regression has a similar power to logistic regression, but it has an acceptable power even with a moderate prevalence rate. However, with a small offset size (< 10), offset poisson regression should be used with caution for rare events or common events. These results would be good guidelines for users who want to use offset poisson regression models for binary data.

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

Kernel Poisson regression for mixed input variables

  • Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1231-1239
    • /
    • 2012
  • An estimating procedure is introduced for kernel Poisson regression when the input variables consist of numerical and categorical variables, which is based on the penalized negative log-likelihood and the component-wise product of two different types of kernel functions. The proposed procedure provides the estimates of the mean function of the response variables, where the canonical parameter is linearly and/or nonlinearly related to the input variables. Experimental results are then presented which indicate the performance of the proposed kernel Poisson regression.

Resistant Poisson Regression and Its Application (저항적 포아송 회귀와 활용)

  • Huh, Myung-Hoe;Sung, Nae-Kyung;Lim, Yong-Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.1
    • /
    • pp.83-87
    • /
    • 2005
  • For the count response we normally consider Poisson regression model. However, the conventional fitting algorithm for Poisson regression model is not reliable at all when the response variable is measured with sizable contamination. In this study, we propose an alternative fitting algorithm that is resistant to outlying values in response and report a case study in semiconductor industry.

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

Kernel Machine for Poisson Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.767-772
    • /
    • 2007
  • A kernel machine is proposed as an estimating procedure for the linear and nonlinear Poisson regression, which is based on the penalized negative log-likelihood. The proposed kernel machine provides the estimate of the mean function of the response variable, where the canonical parameter is related to the input vector in a nonlinear form. The generalized cross validation(GCV) function of MSE-type is introduced to determine hyperparameters which affect the performance of the machine. Experimental results are then presented which indicate the performance of the proposed machine.

  • PDF

Modeling clustered count data with discrete weibull regression model

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.413-420
    • /
    • 2022
  • In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.

Optimal designs for small Poisson regression experiments using second-order asymptotic

  • Mansour, S. Mehr;Niaparast, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.527-538
    • /
    • 2019
  • This paper considers the issue of obtaining the optimal design in Poisson regression model when the sample size is small. Poisson regression model is widely used for the analysis of count data. Asymptotic theory provides the basis for making inference on the parameters in this model. However, for small size experiments, asymptotic approximations, such as unbiasedness, may not be valid. Therefore, first, we employ the second order expansion of the bias of the maximum likelihood estimator (MLE) and derive the mean square error (MSE) of MLE to measure the quality of an estimator. We then define DM-optimality criterion, which is based on a function of the MSE. This criterion is applied to obtain locally optimal designs for small size experiments. The effect of sample size on the obtained designs are shown. We also obtain locally DM-optimal designs for some special cases of the model.

Developing Accident Models of Rotary by Accident Occurrence Location (로터리 사고발생 위치별 사고모형 개발)

  • Na, Hee;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.83-91
    • /
    • 2012
  • PURPOSES : This study deals with Rotary by Accident Occurrence Location. The purpose of this study is to develop the accident models of rotary by location. METHODS : In pursuing the above, this study gives particular attentions to developing the appropriate models using multiple linear, Poisson and negative binomial regression models and statistical analysis tools. RESULTS : First, four multiple linear regression models which are statistically significant(their $R^2$ values are 0.781, 0.300, 0.784 and 0.644 respectively) are developed, and four Poisson regression models which are statistically significant(their ${\rho}^2$ values are 0.407, 0.306, 0.378 and 0.366 respectively) are developed. Second, the test results of fitness using RMSE, %RMSE, MPB and MAD show that Poisson regression model in the case of circulatory roadway, pedestrian crossing and others and multiple linear regression model in the case of entry/exit sections are appropriate to the given data. Finally, the common variable that affects to the accident is adopted to be traffic volume. CONCLUSIONS : 8 models which are all statistically significant are developed, and the common and specific variables that are related to the models are derived.