Park, Byung-Ho;Yoo, Doo-Seon;Yang, Jeong-Mo;Lee, Young-Min
Journal of Korean Society of Transportation
/
v.26
no.2
/
pp.35-46
/
2008
The purposes of this study are to analyze the characteristics and to develop the models of traffic accidents. In pursuing the above, this study gives particular attentions to developing the models(multiple linear, poisson and negative binomial regression) using the data of Cheongju and Cheongwon signalized intersections. The main results analyzed are as follows. First, the accident characteristics of rural area were defined by factor. Second, 4 accident models which are all statistically significant were developed. Finally, such the variables as $X_2$ and $X_{11}$ were evaluated to be specific variables which reflect the characteristics of rural area.
In the maritime shipping industry, imbalance between supply and demand has persistently increased, leading to the utilization of blank sailings by major shipping companies worldwide as a key means of flexibly adjusting vessel capacity in response to shipping market conditions. Traditionally, blank sailings have been frequently implemented around the Chinese New Year period. However, due to unique circumstances such as the global pandemic starting in 2020 and trade tensions between the United States and China, shipping companies have recently conducted larger-scale blank sailings compared to the past. As blank sailings directly impact freight transport delays, they can have negative repercussions from perspectives of both businesses and consumers. Therefore, this study employed Poisson regression models and negative binomial regression models to analyze the influence of maritime freight rate determinants on shipping companies' decisions regarding blank sailings, aiming to proactively address potential consequences. Results of the analysis indicated that, in Poisson regression analysis for 2M, significant variables included global container shipping volume, container vessel capacity, container ship scrapping volume, container ship newbuilding index, and OECD inflation. In negative binomial regression analysis, ocean alliance showed significance with global container shipping volume and container ship order volume, the alliance with container ship capacity and interest rates, non-alliance with international oil prices, global supply chain pressure index, container ship capacity, OECD inflation, and total alliance with container ship capacity and interest rates.
Mongolia's diverse geographical landscape and harsh climate make it particularly susceptible to various natural disasters, including forest fires, heavy rains, dust storms, and heavy snow. This study aims to explore the relationships between key climatic variables and the frequency of these disasters. We collected monthly data from January 2022 to April 2024, encompassing average temperature, temperature variability (absolute temperature difference), average humidity, and precipitation across the capitals of Mongolia's 21 provinces and the capital city Ulaanbaatar. The data were analyzed using multiple statistical models: Linear Regression, Poisson Regression, and Negative Binomial Regression. Descriptive statistics provided initial insights into the variability and distribution of the climatic variables and disaster occurrences. The models aimed to identify significant predictors and quantify their impact on disaster frequencies. Our approach involved standardizing the predictor variables to ensure comparability and interpretability of the regression coefficients. Our findings indicate that climatic variables significantly affect the frequency of natural disasters. The Negative Binomial Regression model was particularly suitable for our data, which exhibited overdispersion common characteristic in count data such as disaster occurrences. Understanding these relationships is crucial for developing targeted disaster management strategies and policies to mitigate the adverse effects of climate change on Mongolian communities. This research provides valuable insights into how climatic changes impact disaster occurrences, offering a foundation for informed decision-making and policy development to enhance community resilience.
This study deals with the traffic accidents by type. The objectives are to analyze the characteristics of 2 accident types, and to develop the models by type. In pursuing the above, this paper gives particular attentions to testing the differences between by type two groups, and developing the models (Poisson and negative binomial regressions) using the data of domestic circular intersections. The main results are as follows. First, the number of accidents in vehicle vehicle was analyzed to account for about 73.41% of total and to be higher than vehicle people. Second, two Poisson models and two negative binomial models which were all statistically significant were developed using vehicle people accidents and vehicle vehicle accidents as dependant variables. Finally, the traffic volume as common variable was selected in the models, and right-turn slip lane, speed hump, the number of driveways, the number of pedestrian crossings as specific variables of the models were selected.
This study deals with the rear-end collisions in the rural aiea. The objectives of this study are 1) to analyze the characteristics of rear-end accidents of signalized intersections, and 2) to develop the accident models for Cheongju-Cheongwon. In pursing the above, this study gives the particular attentions to comparing the characters of urban and rural area. In this study, the dependent variables are the number of accidents and value of EPDO(equivalent property damage only), and independent variables are the traffic volumes and geometric elements. The main results analyzed are the followings. First, the statistical analyses show that the Poisson accident model using the number of accident as a dependant variable are statistically significant and the negative binomial accident model using the value of EPDO are statistically significant. Second, the independent variables of Poisson model are analyzed to be the ratio of high-occupancy vehicles, total traffic volume and the sum of exit/entry, and those of negative binomial regression are the main road width, total traffic volume and the ratio of high-occupancy vehicles. Finally, the specific independent variables to the rural area are the main road width, the ratio of high occupancy vehicle, and the sum exit/entry.
The goal of this study is to develop the accident models of motorcycle at roundabouts. In the pursuing the above, this study gives particular attentions to developing the appropriate models using ZAM. The main results are as follows. First, the evaluation of various developed models by the Vuong statistic and over-dispersion parameter shows that ZINB is analyzed to be optimal among Poisson, NB, ZIP(zero-inflated Poisson) and ZINB regression models. Second, the traffic volume, width of central island and width of approach are evaluated to be important variables to the accidents. Finally, the common variables that affect to the accident are selected to be traffic volume and width of approach. This study might be expected to give some implications to the accident research on the roundabout by motorcycle.
This study deals with the accidents of circular intersections in Korea. The goal is to develop the accident models for 94 circular intersections. In pursuing the above, this study gives particular attentions to collecting the data of geometric structure and accidents, and comparatively analyzing such the models as Poisson and NB regression and multiple regression model using SPSS 17.0 and LIMDEP 3.0. The main results are as follows. First, the negative binomial model among various models was analyzed to be the most appropriate. Second, 3 independent variables was adopted in the model, and these variables was analyzed to have a positive relation to the accident rate. Finally, the reduced width of circulatory roadway, removal of the parking lot within circulatory roadway and appropriate levels of approach lane were required to improve the safety of circular intersection.
Communications for Statistical Applications and Methods
/
v.29
no.4
/
pp.413-420
/
2022
In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.
This article is to estimate the fishing frequency function in Korean recreational fishery with respect to socio-economic characteristics of anglers. First, the study described the characteristics of the entire angler population on the view points of 9 socio-economic variables. And then, the study divided the total angler population into three groups of in-land, sea, and mixed angler populations in order to investigate the differences in their characteristics. The study could confirm the existence of differences in regions, size of regions, and educational levels between the in - land and the sea angler populations by testing heterogeneity in the frequency table. The fishing frequency function is estimated using Poisson regression model in order to accomodate the count data(non-negative discrete random variable) aspects of the fishing frequency. However, the model specification error is found due to overdispersion of data. The model exhibits the lack of goodness of fit. The negative binomial regression model is adopted to cure the overdispersion of the data as an alternative estimation methodology. Finally, the study can confirm overdispersion does not exist in the model any more and the goodness of fit improved significantly to the reasonable level. The results of estimation of fishing frequency population modeled by the negative binomial regression models are following. The three variables of region, sex, and education have effects on the decision making process of fishing frequency in the case of in-land recreation fishery. On the other hand, the three variables of sex, age, and marriage status do the same job in the case of sea angler population. Among the left-over variables, both income and use of Internet variables now affect on the process in mixed angler population. Finally, the results of whole angler population show that all of the previous variables are proven to be statistically significant due to the summation of data with all three sub-groups of angler population.
This study deals with the accident models of arterial link sections by vehicle type. The objectives are to analyze the characteristics of accidents, and to develop the models by type. In pursuing the above, this study uses the data of 414 accidents occurred on 24 major arterial links in 2007. The main results analyzed are as follows. First, the number of accidents is analyzed to account for about 47% in passenger car, 15% in SUV and 10% in trucks. Second, 3 Poisson regression models which are all statistically significant are developed using passenger car, SUV and truck as dependant variables. Finally, AADT and the number of traffic islands as common variables, and the number of pedestrian crossings, lanes, connecting roads, intersections(4-Leg), rate of medians and the number of bus stops as specific variables of the models are selected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.