• Title/Summary/Keyword: poisson and negative binomial regression models

Search Result 53, Processing Time 0.019 seconds

Traffic Crash Prediction Models for Expressway Ramps (고속도로 연결로의 교통사고예측모형 개발)

  • Choi, Yoon-Hwan;Oh, Young-Tae;Choi, Kee-Choo;Lee, Choul-Ki;Yun, Il-Soo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.133-143
    • /
    • 2012
  • PURPOSES: Using the collected data for crash, traffic volume, and design elements on ramps between 2007 and 2009, this research effort was initiated to develop traffic crash prediction models for expressway ramps. METHODS: Three negative binomial regression models and three zero-inflated negative binomial regression models were developed for individual ramp types, including direct, semi-direct and loop, respectively. For validating the developed models, authors compared the estimated crash frequencies with actual crash frequencies of twelve randomly selected interchanges, the ramps of which have not been used for model developing. RESULTS: The results show that the negative binomial regression models for direct, semi-direct and loop ramps showed 60.3%, 63.8% and 48.7% error rates on average whereas the zero-inflated negative binomial regression models showed 82.1%, 120.4% and 57.3%, respectively. CONCLUSIONS: Conclusively, the negative binomial regression models worked better in traffic crash prediction than the zero-inflated negative binomial regression models for estimating the frequency of traffic accidents on expressway ramps.

Urban and Rural Roundabout Accident Occurrence Models (도시 및 지방 회전교차로 사고 발생 모형)

  • Beck, Tea Hun;Lim, Jin Kang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The operational characteristics of roundabouts are generally influenced by location as well as traffic volume. The goal of this study is to develop urban and rural roundabout accident models and to discuss safety improvement guidelines based on the model. METHODS : To analyze accidents, count data models are utilized in this study. This study used accident data from 2010 to 2013 for 56 roundabouts collected from the Traffic Accident Analysis System (TASS) of Road Traffic Authority. Poisson and negative binomial regression models were developed for this study using NLOGIT 4.0. RESULTS : The main results are as follows. First, the hypotheses that there are distributional differences in the number of accidents and injuries/fatalities among rural and urban roundabouts were accepted. Second, Poisson and negative binomial regression accident models, which were all statistically significant, were developed. Seven independent variables, which were statistically significant, were adopted. Third, the common variable of models was evaluated to be traffic volume. CONCLUSIONS : This study developed two negative binomial roundabout accident models and suggested some accident reduction strategies. The results are expected to give some implications to the safety improvement of roundabout.

Accident Models of Circular Intersections by Weather Condition in Korea (기상상태에 따른 국내 원형교차로 사고모형)

  • Park, Byung Ho;Han, Su San
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.178-184
    • /
    • 2012
  • This study deals with the traffic accidents by weather condition. The objectives are to comparatively analyze the characteristics, and to develop the models of traffic accidents by weather condition. In pursuing the above, this paper gives particular attentions to testing the differences between two groups, and developing the models(Poisson and negative binomial regression) using the data of domestic circular intersections. The main results are as follows. First, three Poisson models and one negative binomial models which were all statistically significant were developed using the number of accident and EPDO by the clear weather and other as the dependant variables. Second, the differences between two models were comparatively analyzed using the chosen variables. This paper might be expected to give some implications to traffic safety policy-making to reduce and prevent the traffic accidents in circular intersections.

Development of Accident Model by Traffic Violation Type in Korea 4-legged Circular Intersections (국내 4지 원형교차로 법규위반별 사고모형 개발)

  • Park, Byung Ho;Kim, Kyeong Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.70-76
    • /
    • 2015
  • This study deals with the traffic accident of circular intersections. The purpose of the study is to develop the accident models by traffic violation type. In pursuing the above, this study gives particular attention to analyzing various factors that influence traffic accident and developing such the optimal models as Poisson and Negative binomial regression models. The main results are the followings. First, 4 negative binomial models which were statistically significant were developed. This was because the over-dispersion coefficients had a value greater than 1.96. Second, the common variables in these models were not adopted. The specific variables by model were analyzed to be traffic volume, conflicting ratio, number of circulatory lane, width of circulatory lane, number of traffic island by access road, number of reduction facility, feature of central island and crosswalk.

Developing Accident Models of Rotary by Accident Occurrence Location (로터리 사고발생 위치별 사고모형 개발)

  • Na, Hee;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.83-91
    • /
    • 2012
  • PURPOSES : This study deals with Rotary by Accident Occurrence Location. The purpose of this study is to develop the accident models of rotary by location. METHODS : In pursuing the above, this study gives particular attentions to developing the appropriate models using multiple linear, Poisson and negative binomial regression models and statistical analysis tools. RESULTS : First, four multiple linear regression models which are statistically significant(their $R^2$ values are 0.781, 0.300, 0.784 and 0.644 respectively) are developed, and four Poisson regression models which are statistically significant(their ${\rho}^2$ values are 0.407, 0.306, 0.378 and 0.366 respectively) are developed. Second, the test results of fitness using RMSE, %RMSE, MPB and MAD show that Poisson regression model in the case of circulatory roadway, pedestrian crossing and others and multiple linear regression model in the case of entry/exit sections are appropriate to the given data. Finally, the common variable that affects to the accident is adopted to be traffic volume. CONCLUSIONS : 8 models which are all statistically significant are developed, and the common and specific variables that are related to the models are derived.

Developing Rear-End Collision Models of Roundabouts in Korea (국내 회전교차로의 추돌사고 모형 개발)

  • Park, Byung Ho;Beak, Tae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.151-157
    • /
    • 2014
  • This study deals with the rear-end collision at roundabouts. The purpose of this study is to develop the accident models of rear-end collision in Korea. In pursuing the above, this study gives particular attention to developing the appropriate models using Poisson, negative binomial model, ZAM, multiple linear and nonlinear regression models, and statistical analysis tools. The main results are as follows. First, the Vuong statistics and overdispersion parameters indicate that ZIP is the most appropriate model among count data models. Second, RMSE, MPB, MAD and correlation coefficient tests show that the multiple nonlinear model is the most suitable to the rear-end collision data. Finally, such the independent variables as traffic volume, ratio of heavy vehicle, number of circulatory roadway lane, number of crosswalk and stop line are adopted in the optimal model.

Traffic Accident Models for Trucks at Roundabouts (회전교차로에서의 화물차 사고모형)

  • Son, Seul Ki;Kim, Tae Yang;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.19 no.4
    • /
    • pp.53-59
    • /
    • 2017
  • PURPOSES : This study deals with traffic accidents involving trucks. The objective of this study is to develop a traffic accident model for trucks at roundabouts. METHODS : To achieve its objective, this study gives particular attention to develop appropriate models using Poisson and negative binomial regression models. Traffic accident data from 2007 to 2014 were collected from TAAS data set of road traffic authority. Thirteen explanatory variables such as geometry and traffic volume were used. RESULTS : The main results can be summarized as follows: (1) two statistically significant Poisson models (${\rho}^2=0.398$ and 0.435) were developed, and (2) the analysis revealed the common variables to be traffic volume, number of exit lanes, speed breakers, and truck apron width. CONCLUSIONS : Our modeling reveals that increasing the number of speed breakers and speed limit signs, and widening the truck apron width are important for reducing the number of truck accidents at roundabouts.

Analysis of Food Poisoning via Zero Inflation Models

  • Jung, Hwan-Sik;Kim, Byung-Jip;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.859-864
    • /
    • 2012
  • Poisson regression and negative binomial regression are usually used to analyze counting data; however, these models are unsuitable for fit zero-inflated data that contain unexpected zero-valued observations. In this paper, we review the zero-inflated regression in which Bernoulli process and the counting process are hierarchically mixed. It is known that zero-inflated regression can efficiently model the over-dispersion problem. Vuong statistic is employed to compare performances of the zero-inflated models with other standard models.

Developing the Sideswipe Accident Model at Roundabouts (회전교차로 측면충돌 사고모형 개발)

  • Park, Byung Ho;Lim, Jin Kang;Kim, Sung Ryong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • This study deals with the roundabout accidents. The goal of this study is to develop the sideswipe accident models at roundabout. In the pursuing the above, this study gives particular attentions to collecting the data of geometric structure and accidents of 54 roundabouts in Korea and developing the Poisson and negative binomial regression models. The main results are as follows. First, sideswipe accident is analyzed to be the highest frequency that is 39.5% of total accident data. Second, Poisson models which is statistically significant is developed. Finally, traffic volume per approach($X_1$), number of circulatory roadway($X_3$), operation of parking lot($X_4$) and width of circulatory roadway($X_6$) are adopted as the common variables. This study might be expected to give some implications to the accident research on the roundabout.

Forecasting hierarchical time series for foodborne disease outbreaks (식중독 발생 건수에 대한 계층 시계열 예측)

  • In-Kwon Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.499 -508
    • /
    • 2024
  • In this paper, we investigate hierarchical time series forecasting that adhere to a hierarchical structure when deriving predicted values by analyzing segmented data as well as aggregated datasets. The occurrences of food poisoning by a specific pathogen are analyzed using zero-inflated Poisson regression models and negative binomial regression models. The occurrences of major, miscellaneous, and overall food poisoning are analyzed using Poisson regression models and negative binomial regression models. For hierarchical time series forecasting, the MinT estimation proposed by Wickramasuriya et al. (2019) is employed. Negative predicted values resulting from hierarchical adjustments are adjusted to zero, and weights are multiplied to the remaining lowest-level variables to satisfy the hierarchical structure. Empirical analysis revealed that there is little difference between hierarchical and non-hierarchical adjustments in predictions based on pathogens. However, hierarchical adjustments generally yield superior results for predictions concerning major, miscellaneous, and overall occurrences. Without hierarchical adjustment, instances may occur where the predicted frequencies of the lowest-level variables exceed that of major or miscellaneous occurrences. However, the proposed method enables the acquisition of predictions that adhere to the hierarchical structure.