• Title/Summary/Keyword: point source model

Search Result 587, Processing Time 0.035 seconds

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.

Control of the flow past a sphere in a turbulent boundary layer using O-ring

  • Okbaz, Abdulkerim;Ozgoren, Muammer;Canpolat, Cetin;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • This research work presents an experimental study's outcomes to reveal the impact of an O-ring on the flow control over a sphere placed in a turbulent boundary layer. The investigation is performed quantitatively and qualitatively using particle image velocimetry (PIV) and dye visualization. The sphere model having a diamater of 42.5 mm is located in a turbulent boundary layer flow over a smooth plate for gap ratios of 0≤G/D≤1.5 at Reynolds number of 5 × 103. Flow characteristics, including patterns of instantaneous vorticity, streaklines, time-averaged streamlines, velocity vectors, velocity fluctuations, Reynolds stress correlations, and turbulence kinetic energy (), are compared and discussed for a naked sphere and spheres having O-rings. The boundary layer velocity gradient and proximity of the sphere to the flat plate profoundly influence the flow dynamics. At proximity ratios of G/D=0.1 and 0.25, a wall jet is formed between lower side of the sphere and flat plate, and velocity fluctuations increase in regions close to the wall. At G/D=0.25, the jet flow also induces local flow separations on the flat plate. At higher proximity ratios, the velocity gradient of the boundary layer causes asymmetries in the mean flow characteristics and turbulence values in the wake region. It is observed that the O-ring with various placement angles (𝜃) on the sphere has a considerable alteration in the flow structure and turbulence statistics on the wake. At lower placement angles, where the O-ring is closer to the forward stagnation point of the sphere, the flow control performance of the O-ring is limited; however, its impact on the flow separation becomes pronounced as it is moved away from the forward stagnation point. At G/D=1.50 for O-ring diameters of 4.7 (2 mm) and 7 (3 mm) percent of the sphere diameter, the -ring exhibits remarkable flow control at 𝜃=50° and 𝜃=55° before laminar flow separation occurrence on the sphere surface, respectively. This conclusion is yielded from narrowed wakes and reductions in turbulence statistics compared to the naked sphere model. The O-ring with a diameter of 3 mm and placement angle of 50° exhibits the most effective flow control. It decreases, in sequence, streamwise velocity fluctuations and length of wake recovery region by 45% and 40%, respectively, which can be evaluated as source of decrement in drag force.

3D Shape Embodiment of Dam using the 3D Laser Scanning System (3차원 레이저 스케닝 시스템을 이용한 댐체의 3차원 형상구현)

  • Shon, Ho-Woong;Yun, Bu-yeol;Park, Dong-il;Pyo, Ki-Won
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2006
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data (드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구)

  • Chan-hwi, Shin;Gyeong-jo, Min;Gyeong-Gyu, Kim;PuReun, Jeon;Hoon, Park;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.15-26
    • /
    • 2022
  • With the recent increase in old and dangerous buildings, the demand for technology in the field of structure demolition is rapidly increasing. In particular, in the case of structures with severe deformation of damage, there is a risk of deterioration in stability and disaster due to changes in the load distribution characteristics in the structure, so rapid structure demolition technology that can be efficiently dismantled in a short period of time is drawing attention. However, structural deformation such as unauthorized extension or illegal remodeling occurs frequently in many old structures, which is not reflected in structural information such as building drawings, and acts as an obstacle in the demolition design process. In this study, as an effective way to overcome the discrepancy between the structural information of old structures and the actual structure, access to actual structures through 3D modeling was considered. 3D point cloud data inside and outside the building were obtained through LiDAR and drone photography for buildings scheduled to be blasting demolition, and precision matching between the two spatial data groups was performed using an open-source based spatial information construction system. The 3D structure model was completed by importing point cloud data matched with 3D modeling software to create structural drawings for each layer and forming each member along the structure slab, pillar, beam, and ceiling boundary. In addition, the modeling technique proposed in this study was verified by comparing it with the actual measurement value for selected structure member.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Study of Selection of Regression Equation for Flow-conditions using Machine-learning Method: Focusing on Nakdonggang Waterbody (머신러닝 기법을 활용한 유황별 LOADEST 모형의 적정 회귀식 선정 연구: 낙동강 수계를 중심으로)

  • Kim, Jonggun;Park, Youn Shik;Lee, Seoro;Shin, Yongchul;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.4
    • /
    • pp.97-107
    • /
    • 2017
  • This study is to determine the coefficients of regression equations and to select the optimal regression equation in the LOADEST model after classifying the whole study period into 5 flow conditions for 16 watersheds located in the Nakdonggang waterbody. The optimized coefficients of regression equations were derived using the gradient descent method as a learning method in Tensorflow which is the engine of machine-learning method. In South Korea, the variability of streamflow is relatively high, and rainfall is concentrated in summer that can significantly affect the characteristic analysis of pollutant loads. Thus, unlike the previous application of the LOADEST model (adjusting whole study period), the study period was classified into 5 flow conditions to estimate the optimized coefficients and regression equations in the LOADEST model. As shown in the results, the equation #9 which has 7 coefficients related to flow and seasonal characteristics was selected for each flow condition in the study watersheds. When compared the simulated load (SS) to observed load, the simulation showed a similar pattern to the observation for the high flow condition due to the flow parameters related to precipitation directly. On the other hand, although the simulated load showed a similar pattern to observation in several watersheds, most of study watersheds showed large differences for the low flow conditions. This is because the pollutant load during low flow conditions might be significantly affected by baseflow or point-source pollutant load. Thus, based on the results of this study, it can be found that to estimate the continuous pollutant load properly the regression equations need to be determined with proper coefficients based on various flow conditions in watersheds. Furthermore, the machine-learning method can be useful to estimate the coefficients of regression equations in the LOADEST model.

Empirical Study on the Mode Choice Behavior of Travelers by Express Bus and Express Train (특급(特急)과 고속(高速)버스 이용자(利用者)의 수단선정행태(手段選定行態)에 관한 경험적(經驗的) 연구(研究))

  • Kim, Kyung Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 1983
  • The purposes of this study are to analyze/model the mode choice behavior of the regional traveler by express bus/express train and to offer useful source in deciding the public transportation policy. The data analyzed were trips of both modes from March, 1980 to November, 1981, between Seoul and other nineteen cities; the data were grouped as five groups according to the change of service variables. Service variables were travel time(unit: minute), cost(:won), average allocation time(:won), service hour(:hour), and dummy variables by mode. As model Logit Model with linear or log utility function were postulated. As the result of this study, some reseanable models were constructed at Model Type I(eq. 2. of this paper) based on the above data except the dummy. It was judged that the parameters calibrated by Group III and Group IV data in table 4, were optimal. Among the parameters, the parameter of travel cost was most reliable. There was a tendency preferring express bus to train in October and November. With the constructed model and Pivot-Point Method. the demand change of express train caused by the service variables' change could be forecasted over 99%.

  • PDF

Process Fault Probability Generation via ARIMA Time Series Modeling of Etch Tool Data

  • Arshad, Muhammad Zeeshan;Nawaz, Javeria;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.241-241
    • /
    • 2012
  • Semiconductor industry has been taking the advantage of improvements in process technology in order to maintain reduced device geometries and stringent performance specifications. This results in semiconductor manufacturing processes became hundreds in sequence, it is continuously expected to be increased. This may in turn reduce the yield. With a large amount of investment at stake, this motivates tighter process control and fault diagnosis. The continuous improvement in semiconductor industry demands advancements in process control and monitoring to the same degree. Any fault in the process must be detected and classified with a high degree of precision, and it is desired to be diagnosed if possible. The detected abnormality in the system is then classified to locate the source of the variation. The performance of a fault detection system is directly reflected in the yield. Therefore a highly capable fault detection system is always desirable. In this research, time series modeling of the data from an etch equipment has been investigated for the ultimate purpose of fault diagnosis. The tool data consisted of number of different parameters each being recorded at fixed time points. As the data had been collected for a number of runs, it was not synchronized due to variable delays and offsets in data acquisition system and networks. The data was then synchronized using a variant of Dynamic Time Warping (DTW) algorithm. The AutoRegressive Integrated Moving Average (ARIMA) model was then applied on the synchronized data. The ARIMA model combines both the Autoregressive model and the Moving Average model to relate the present value of the time series to its past values. As the new values of parameters are received from the equipment, the model uses them and the previous ones to provide predictions of one step ahead for each parameter. The statistical comparison of these predictions with the actual values, gives us the each parameter's probability of fault, at each time point and (once a run gets finished) for each run. This work will be extended by applying a suitable probability generating function and combining the probabilities of different parameters using Dempster-Shafer Theory (DST). DST provides a way to combine evidence that is available from different sources and gives a joint degree of belief in a hypothesis. This will give us a combined belief of fault in the process with a high precision.

  • PDF

Evaluation of Runoff Prediction from a Coniferous Forest Watersheds and Runoff Estimation under Various Cover Degree Scenarios using GeoWEPP Watershed Model (GeoWEPP을 이용한 침엽수림 지역 유출특성 예측 및 다양한 식생 피도에 따른 유출량 평가)

  • Choi, Jaewan;Shin, Min Hwan;Cheon, Se Uk;Shin, Dongseok;Lee, Sung Jun;Moon, Sun Jung;Ryu, Ji Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.425-432
    • /
    • 2011
  • To control non-point source pollution at a watershed scale, rainfall-runoff characteristics from forest watersheds should be investigated since the forest is the dominant land use in Korea. Long-term monitoring would be an ideal method. However, computer models have been utilized due to limitations in cost and labor in performing long-term monitoring at the watersheds. In this study, the Geo-spatial interface to the Water Erosion Prediction Project (GeoWEPP) model was evaluated for its runoff prediction from a coniferous forest dominant watersheds. The $R^2$ and the NSE for calibrated result comparisons were 0.77 and 0.63, validated result comparisons were 0.92, 0.89, respectively. These comparisons indicated that the GeoWEPP model can be used in evaluating rainfall-runoff characteristics. To estimate runoff changes from a coniferous forest watershed with various cover degree scenarios, ten cover degree scenarios (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%) were run using the calibrated GeoWEPP model. It was found that runoff increases with decrease in cover degree. Runoff volume was the highest ($206,218.66m^3$) at 10% cover degree, whereas the lowest ($134,074.58m^3$) at 100% cover degree due to changes in evapotranspiration under various cover degrees at the forest. As shown in this study, GeoWEPP model could be efficiently used to investigate runoff characteristics from the coniferous forest watershed and effects of various cover degree scenarios on runoff generation.

The Analysis of Future Land Use Change Impact on Hydrology and Water Quality Using SWAT Model (SWAT 모형을 이용한 미래 토지이용변화가 수문 - 수질에 미치는 영향 분석)

  • Park, Jong-Yoon;Lee, Mi Seon;Lee, Yong Jun;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.187-197
    • /
    • 2008
  • This study is to assess the impact of future land use change on hydrology and water quality in Gyungan-cheon watershed ($255.44km^2$) using SWAT (Soil and Water Assessment Tool) model. Using the 5 past Landsat TM (1987, 1991, 1996, 2004) and $ETM^+$ (2001) satellite images, time series of land use map were prepared, and the future land uses (2030, 2060, 2090) were predicted using CA-Markov technique. The 4 years streamflow and water quality data (SS, T-N, T-P) and DEM (Digital Elevation Model), stream network, and soil information (1:25,000) were prepared. The model was calibrated for 2 years (1999 and 2000), and verified for 2 years (2001 and 2002) with averaged Nash and Sutcliffe model efficiency of 0.59 for streamflow and determination coefficient of 0.88, 0.72, 0.68 for Sediment, T-N (Total Nitrogen), T-P (Total Phosphorous) respectively. The 2030, 2060 and 2090 future prediction based on 2004 values showed that the total runoff increased 1.4%, 2.0% and 2.7% for 0.6, 0.8 and 1.1 increase of watershed averaged CN value. For the future Sediment, T-N and T-P based on 2004 values, 51.4%, 5.0% and 11.7% increase in 2030, 70.5%, 8.5% and 16.7% increase in 2060, and 74.9%, 10.9% and 19.9% increase in 2090.