• Title/Summary/Keyword: point source model

Search Result 587, Processing Time 0.031 seconds

A prolate spheroidal head modeling of head related transfer function based on ray tracing formula (선추적공식을 이용한 머리전달함수의 회전타원체 형상 모델링)

  • Jo, Hyun;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.934-938
    • /
    • 2008
  • To customize individual characteristics of HRTF, a spherical model has been used for structural modeling technique. A pseudo-code of prolate spheroidal HRTF caused by incident acoustic point source is already developed, and it can be used a head shadow filter for structural modeling of HRTF. In this research, to see the necessity and efficiency of spheroidal head modeling, ITD optimization is performed on CIPIC HRTF database. From given cost function, ITD-optimized spheroidal head model, whose ITD information is the most matched version of measured ITD information, is found by varying head parameters subject by subject. By comparing results of ITD-optimized spheroids and ITD-optimized spheres, we concluded that a spherical head model is more efficient way of generating head shadow effect than a spheroidal head model does.

  • PDF

Modeling of silicon carbide etching in a $NF_3/CH_4$ plasma using neural network ($NF_3/CH_4$ 플라즈마를 이용한 실리콘 카바이드 식각공정의 신경망 모델링)

  • Kim, Byung-Whan;Lee, Suk-Yong;Lee, Byung-Teak;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.58-62
    • /
    • 2003
  • Silicon carbide (SiC) was etched in a $NF_3/CH_4$ inductively coupled plasma. The etch process was modeled by using a neural network called generalized regression neural network (GRNN). For modeling, the process was characterized by a $2^4$ full factorial experiment with one center point. To test model appropriateness, additional test data of 16 experiments were conducted. Particularly, the GRNN predictive capability was drastically improved by a genetic algorithm (GA). This was demonstrated by an improvement of more than 80% compared to a conventionally obtained model. Predicted model behaviors were highly consistent with actual measurements. From the optimized model, several plots were generated to examine etch rate variation under various plasma conditions. Unlike the typical behavior, the etch rate variation was quite different depending on the bias power Under lower bias powers, the source power effect was strongly dependent on induced dc bias. The etch rate was strongly correated to the do bias induced by the gas ratio. Particularly, the etch rate variation with the bias power at different gas ratio seemed to be limited by the etchant supply.

  • PDF

Calculation of the Electric Field in Antenna Region for a Planar-type Inductively Coupled Plasma Source Using Surface Current Model (표면 전류 모델을 이용한 TCP 장치의 안테나 영역 전기장 계산)

  • Jung, B.S.;Yoon, N.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.419-425
    • /
    • 2008
  • In previous study, it was reported that the anomalous skin effect should be considered in the low pressure condition(<10 mTorr). However there is the problem that the filament type antenna model of which size is 0 makes the non-physical phenomena that the electric field at the antenna point is infinite. Therefore, in this work, using the surface current model the electric field in antenna region is calculated and compared with the case of filament type antenna model in various conditions.

ANALOG COMPUTING FOR A NEW NUCLEAR REACTOR DYNAMIC MODEL BASED ON A TIME-DEPENDENT SECOND ORDER FORM OF THE NEUTRON TRANSPORT EQUATION

  • Pirouzmand, Ahmad;Hadad, Kamal;Suh, Kune Y.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.243-256
    • /
    • 2011
  • This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.

Effects of Acupuncture applied to Food Samli on the Rat Model of Knee Arthritic Pain (족삼리(足三里) 전침(電鍼)이 백서(白鼠)의 슬관절염(膝關節炎) 통증(痛症)에 미치는 영향(影響))

  • Park, Sung-Ik;Koo, Sung-Tae;Hwang, Jae-Ho;Shin, Jong-Keun;Sohn, In-Chul;Kim, Kyung-Sik
    • Korean Journal of Acupuncture
    • /
    • v.21 no.1
    • /
    • pp.113-127
    • /
    • 2004
  • Objectives : The usage of acupuncture has gained popularity as an alternative method of treatment for certain chronic pain conditions. However, the efficacy of acupuncture in various diseases has not been fully established and the underlying mechanism is not clearly understood. In the present study, the effect of electroacupuncture (EA) applied to foot samli$(ST_{36})$ on the carrageenan-induced knee arthritic pain was examined. Methods : A common source of persistent pain in humans is the knee arthritis. Knee arthritis was induced by injection of 2 % carrageenan $50\;{\mu}l$ into the knee joint cavity. When rats developed pain behaviors, EA was applied for 30 min. under enflurane anesthesia with repeated train stimuli at the intensity of 10X of muscle twitch threshold. The weight bearing force of the hind limb was measured for an indicator of pain level after each manipulation. Results : The average weight borne by the hind limb during normal gait was 55% of total body weight, which was reduced to less than 10% after knee arthritis. EA improved the weight bearing of the arthritic hind limb significantly for the duration of 4 hr. EA applied to $ST_{36}$ point produced a significant improvement of stepping force of the arthritic foot lasting for at least 4 h. However, $GB_{31}$ point did not produce any significant increase of weight bearing force. The analgesic effect was specific to the acupuncture point since the analgesic effect on the knee arthritis model could not be mimicked by EA applied to a nearby point, $GB_{31}$. The relations between EA-induced analgesia and endogenous nitric oxide(NO) and inducible NO synthase(iNOS)/neuronal NOS was also examined. Results were turned out that both NO production and nNOS/iNOS protein expression which is increased by arthritis were suppressed by EA stimulation applied to $ST_{36}$ point. Conclusions : The data suggest 1) that EA produces a potent analgesic effect on the rat model of chronic knee arthritis pain in a point specific manner and 2) that EA-induced analgesia modulate endogenous NO through the suppression of nNOS/iNOS protein expression.

  • PDF

Three-dimensional Cross-hole EM Modeling using the Extended Born Approximation (확장 Born 근사에 의한 시추공간 3차원 전자탐사 모델링)

  • Lee, Seong-Kon;Kim, Hee-Joon;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.86-95
    • /
    • 1999
  • This paper presents an efficient three-dimensional (3-D) modeling algorithm using the extended approximation to an electric field integral equation. Numerical evaluations of Green's tensor integral are performed in the spatial wavenumber domain. This approach makes it possible to reduce computing time, to handle smoothly varying conductivity model and to remove singularity problems encountered in the integration of Green's tensor at a source point. The responses obtained by 3-D modeling algorithm developed in this study are compared with those by the full integral equation for a thin-sheet EM scattering. The extensive analyses on the performance of modeling algorithm are made with the conductivity contrasts and source frequencies. These results show that the modeling algorithm are accurate up to the conductivity contrast of 1:16 and the frequency range of 100 Hz-100 kHz. The extended Born approximation, however, may produce inaccurate results for some source and model configurations in which the electric field is discontinuous across the conductivity boundary. We performed the modeling of a composite model of which conductivity varies continuously and this shows the modeling algorithm developed in this study is efficient for 3-D EM modeling. For a cross-hole source-receiver configuration a composite model of which conductivity varies continuously can be successfully simulated using this algorithm.

  • PDF

Calculation Method of Transient Potential Rises of Horizontal Ground Electrodes Depending on Injection Point of the Ground Current (접지전류의 입사점에 따른 정보통신설비용 수평접지전극의 과도전위상승 계산 방법)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.197-203
    • /
    • 2014
  • When the lightning current is injected to the ground system of information and communication facilities, analysis of the transient potential rise in the ground system is one of main factors to effectively design the ground system. The performance of grounding systems is normally estimated with the grounding impedance and the transient potential rise which represents the electrical characteristics of the grounding system. The method for calculating the grounding impedance depending on the injection point of the lightning current was proposed. The delta-gap source model was proposed to calculate the grounding impedance in the case that the lightning current is injected to the center of the horizontal ground electrode. A new program which is possible to apply the frequency-dependent soil parameters using the Debye model was developed, because a commercial program for analyzing the performance of the grounding system can not apply to the frequency-dependent soil parameters. The experiment was carried out to confirm the availability of the simulation results with the same condition. Finally, the transient potential rises of a horizontal ground electrode depending on the lightning current waveforms were analyzed by using the results of the grounding impedance which is associated with the frequency-dependent soil parameters.

Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake (호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구)

  • Yeom, Bo-Min;Lee, Hye Won;Moon, Hee-Il;Yun, Dong-Gu;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

PSCAD/EMTDC Based Modeling and Simulation Analysis of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 미용한 계통연계형 태양광발전시스템의 모델링 및 모의 해석)

  • Jeon Jin-Hong;Kim Eung-Sang;Kim Seul-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.107-116
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMTDC, an industry standard simulation tool for studying the transient behavior of electric power system and apparatus, is used to conduct all aspects of model implementation and to carry out extensive simulation study. This paper is aimed at sharing with the PSCAD/EMTDC user community our user-defined model for PV system applications, which is not yet available as a standard model within PSCAD/EMTDC. An equivalent circuit model of a solar cell has been used for modeling solar array. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed.

Implementation of 3-point Seat Belt Model into ATB Program (ATB 프로그램에서 삼점식 좌석 벨트 모델의 구현)

  • Jeon, Kyu-Nam;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.145-154
    • /
    • 2003
  • Occupant simulation models have been used to study trends or specific design changes in several typical crash situations. The ATB, Articulated Total Body, was developed and used to predict gross human body responses to vehicle crashes and pilot ejections. Since the ATB source code is open to public, the user can add their own defined modules and functions. The introduction of seat belts into cars significantly decreased the injury risk of passengers in frontal impacts. In this paper, a new seat belt model was developed and implemented into the ATB. For this purpose, a subroutine of the new seat belt was constructed. A force-deflection function was added to replace an existing function to consider energy absorption. The function includes hysteresis effects of the experiment data of the loading and unloading parts of the seat belt load-extension curve. Moreover, this belt model considers a slip between ellipsoid and belt segments. This paper attempted to validate the ATB program which includes the subroutine of new belt models comparing with the real car frontal crash experiments and MADYMO frontal models. The analysis focusses on the human movement and body accelerations.