• Title/Summary/Keyword: point process

Search Result 6,690, Processing Time 0.043 seconds

Point Data Reduction in Reverse Engineering by Delaunay Triangulation (역공학에서의 Delaunay 삼각형 분할에 의한 점 데이터 감소)

  • Lee, Seok-Hui;Heo, Seong-Min;Kim, Ho-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1246-1252
    • /
    • 2001
  • Reverse engineering has been widely used for the shape reconstruction of an object without CAD data and the measurement of clay or wood models for the development of new products. To generate a surface from measured points by a laser scanner, typical steps include the scanning of a clay or wood model and the generation of manufacturing data like STL file. A laser scanner has a great potential to get geometrical data of a model for its fast measuring speed and higher precision. The data from a laser scanner are composed of many line stripes of points. A new approach to remove point data with Delaunay triangulation is introduced to deal with problems during reverse engineering process. This approach can be used to reduce a number of measuring data from laser scanner within tolerance, thus it can avoid the time for handling point data during modelling process and the time for verifying and slicing STL model during RP process.

Study on Multi-point Dieless Forming Technology Based on Numerical and Experimental Approach (수치 및 실험적 접근을 통한 다점무금형성형기술 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.220-223
    • /
    • 2008
  • Large curved plate blocks are widely used to construct hull structure in shipbuilding industry. Most curved plates are manufactured by using manual method called as line heating that use deformation caused by residual stress after local heating along a line which is perpendicular to the curvature direction. However, its working environment is poor and its formability is totally dependent on an experienced technician. In view of that, multi-point dieless forming (MDF) technology that use reconfigurable punch arrays instead of one piece die is proposed in this study. The MDF process is based on a concept of equivalent die surface made by numbers of punches which has round tip at the end of it. In this study, numerical simulation for common curvature type such as saddle shape was carried out. In addition, experiments in the plate forming process were also conducted to compare with the numerical results in view of final configuration. Consequently, it was noted that the proposed dieless forming method has considerable feasibility to substitute the new process for conventional manual method.

  • PDF

A Study on the Fracture Detection of Multi-Point-Tool (다인공구의 파손검출에 관한 연구)

  • Choi, Young Kyu;Ryu, Bong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.67-77
    • /
    • 1995
  • In modern industry the requirement of automation of manufacturing process increases so that unmanned system has been popular as an ultimate goal of modern manufacturing process. In unmanned manufacturing process the tool fracture is a very serious problem because it results in the damage of workpieces and can stop the operation of whole manufa- turing system. In this study, image processing technique is used to detect the fracture of insert tip of face milling using multi-point-tool. In order to acquire the image information of fracture shape of rotation insert tip. We set up the optical system using a light beam chopper. In this system we can reduce the image degradation generated from stopped image of rotating insert tip using image restoration technique. We calculated the mean square error to diagnose the condition of tool fracture, and determind the criteria of tool fracture using experimental and staticstical method. From the results of this study we've developed non- contact detection technique of tool fracture using image processing method and proposed the fracture direction of automation and unmanned system considering the optimal time of tool change milling.

  • PDF

Development of an index that decreases birth weight, promotes postnatal growth and yet minimizes selection intensity in beef cattle

  • Kenji Togashi;Toshio Watanabe;Atsushi Ogino;Masakazu Shinomiya;Masashi Kinukawa;Kazuhito Kurogi;Shohei Toda
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.839-851
    • /
    • 2024
  • Objective: The main goal of our current study was to improve the growth curve of meat animals by decreasing the birth weight while achieving a finishing weight that is the same as that before selection but at younger age. Methods: Random regression model was developed to derive various selection indices to achieve desired gains in body weight at target time points throughout the fattening process. We considered absolute and proportional gains at specific ages (in weeks) and for various stages (i.e., early, middle, late) during the fattening process. Results: The point gain index was particularly easy to use because breeders can assign a specific age (in weeks) as a time point and model either the actual weight gain desired or a scaled percentage gain in body weight. Conclusion: The point gain index we developed can achieve the desired weight gain at any given postnatal week of the growing process and is an easy-to-use and practical option for improving the growth curve.

Analysis of 3-D Cutting Process with Single Point Tool

  • Lee, Young-Moon;Park, Won-Sik;Song, Tae-Seong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • This study presents a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool. The edge of a single point tool including a circular nose is modified to an equivalent straight edge, thereby reducing the 3-D cutting with a single point tool to the equivalent of oblique cutting. Then, by transforming the conventional coordinate systems and using the measurements of three cutting force components, the force components on the rake face and shear plane of the equivalent oblique cutting system can be obtained. As a result, the chip-tool friction and shear characteristics of 3-D cutting with a single point tool can be assessed.

  • PDF

A Real Time Quadrotor Autonomous Navigation and Remote Control Method (실시간 쿼드로터 자율주행과 원격제어 기법)

  • Son, Byung-Rak;Kang, Seok-Min;Lee, Hyun;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.4
    • /
    • pp.205-212
    • /
    • 2013
  • In recent, the demand of Unmanned Aerial Vehicles (UAVs) that can autonomous navigation and remote control has been increased in military, civil and commercial field. Particularly, existing researches focused on autonomous navigation method based on vanish point and remote control method based on event processing in indoor environments. However, the existing methods have some problems. For instance, a detected vanish point in intersection point has too much detection errors. In addition, the delay is increased in existing remote control system for processing images in real time. Thus, we propose improved vanish point algorithm by removing detection errors in intersection point. We also develop a remote control system with android platform by separating flying control and image process. Finally, we compare the proposed methods with existing methods to show the improvement of our approaches.

Multi-Point Sheet Forming Using Elastomer (탄소중합체를 이용한 다점 박판 성형)

  • 박종우
    • Transactions of Materials Processing
    • /
    • v.13 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • Recently, instead of a matched die forming method requiring a high cost and long delivery term, a multi-point dieless forming method using a pair of matrix type punch array as flexible dies has been developed. Since the conventional multi-point dieless forming method has some disadvantages of difficulty in precise punch control and high-cost of equipment, a new concept of multi-point dieless forming method combined with an elasto-forming method has been suggested in this study. For optimal selection of elastomers, compression tests of rubbers, polyethylene and foams were carried out together with FEM analysis of the deformation behavior during sheet forming process using a rigid punch and elastomers. Compressive strain was concentrated on the upper central area of the elastomer under the punch, and the rubber exhibited higher concentration of the compressive strain than foams. Two-dimensional curved surface was formed successfully by the multi-point elasto-dieless forming method using an optimal combination of rubber and foam materials.

Multi-point sheet forming using elastomer (탄소중합체를 이용한 다점 박판 성형)

  • Park Jong-Woo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.21-28
    • /
    • 2003
  • Recently, instead of a matched die forming method requiring a high cost and long deliverly ten a multi-point dieless forming method using a pair of matrix type punch array as flexible dies has been developed. As this multi-point dieless forming method has some disadvantage of difficulty in precise punch control and high-cost of equipment, a new concept of multi-point dieless forming method combined with elastomer forming was suggested in this study. For optimal selection of elastomers, compression tests of rubbers, polyethylene and foams were carried out together with FEM analysis of the deformation behavior during sheet forming process using a rigid punch and elastomers. Compressive strain was concentrated on the upper central area of the elastomer under the punch, and the rubber exhibited higher concentration of the compressive strain than foams. Two-dimensional curved surface was formed successfully by the multi-point elasto-dieless forming method using an optimal combination of a rubber and foam.

  • PDF

A Study on the Effective Preprocessing Methods for Accelerating Point Cloud Registration

  • Chungsu, Jang;Yongmin, Kim;Taehyun, Kim;Sunyong, Choi;Jinwoo, Koh;Seungkeun, Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.111-127
    • /
    • 2023
  • In visual slam and 3D data modeling, the Iterative Closest Point method is a primary fundamental algorithm, and many technical fields have used this method. However, it relies on search methods that take a high search time. This paper solves this problem by applying an effective point cloud refinement method. And this paper also accelerates the point cloud registration process with an indexing scheme using the spatial decomposition method. Through some experiments, the results of this paper show that the proposed point cloud refinement method helped to produce better performance.

Efficient Image Size Selection for MPEG Video-based Point Cloud Compression

  • Jia, Qiong;Lee, M.K.;Dong, Tianyu;Kim, Kyu Tae;Jang, Euee S.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.825-828
    • /
    • 2022
  • In this paper, we propose an efficient image size selection method for video-based point cloud compression. The current MPEG video-based point cloud compression reference encoding process configures a threshold on the size of images while converting point cloud data into images. Because the converted image is compressed and restored by the legacy video codec, the size of the image is one of the main components in influencing the compression efficiency. If the image size can be made smaller than the image size determined by the threshold, compression efficiency can be improved. Here, we studied how to improve the compression efficiency by selecting the best-fit image size generated during video-based point cloud compression. Experimental results show that the proposed method can reduce the encoding time by 6 percent without loss of coding performance compared to the test model 15.0 version of video-based point cloud encoder.

  • PDF