• Title/Summary/Keyword: point of impact

Search Result 1,729, Processing Time 0.032 seconds

A Kinematic Comparison between the Racquetball Backhand and Squash Backhand Strokes (라켓볼 백핸드와 스쿼시 백핸드 스트로크 동작의 운동학적 비교)

  • Kim, Seoung-Eun;Kim, Seung-Kwon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.139-148
    • /
    • 2010
  • The purpose of this study was to comparatively analyze the kinematic variables between the squash backhand and racquetball backhand strokes through three-dimensional cinematography. Three expert racquetball players and three expert squash players were involved in the data gathering process. The horizontal, vertical and lateral displacement of racket and trunk segment, intersegmental angular velocity of the wrist, elbow and shoulder joints, and the linear velocity of the racket were descriptively analyzed, and the followings were concluded. The racket of the squash backhand stroke showed an 'U' shaped movement where the racket moved rapidly downward and moved forward to make an impact and followed through to a front-top finish, while the racket of racquetball backhand stroke showed an 'O' shaped movement where the racket showed circular movement through the rear and bottom positions for the impact, and showed rotation through the lower-front and upper front to a upper-rear-ward finish during the follow-through. The peak velocity of racket was found before the impact point in the squash backhand stroke and at the impact point in the racquetball backhand stroke. For the final conclusion, for the squash backhand stoke, instructors might be better to make the racket move downward to make highest velocity before the impact and finished short follow-through, while for the racquetball backhand stroke, to make the racket move forward to make highest velocity at the impact and finished rather long follow-through.

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces

  • Wang, Zefeng;Qu, Wenhai;Xiong, Jinbiao;Zhong, Mingjun;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.508-519
    • /
    • 2020
  • During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.

A Study on the Influence Factors on Flexural and Thickness Modes in the Impact-echo Test (충격반향기법에서의 휨 모드 및 두께 모드의 영향인자에 대한 연구)

  • Oh, Tae-Keun;Park, Jongl-Il;Byun, Yoseph;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.659-666
    • /
    • 2015
  • In this paper, various influence factors on the impact-echo test which is an effective method in characterizing defects such as such as the delamination in the concrete structures were studied. The side to thickness ratio(a/h), the relative position of impacting and sensing points over the delamination that have great effects on the flexural and impact-echo(thickness) modes were investigated and examined by the parametric finite element analysis. As a result, the flexural modes dominate in the case of a/h > 2 and the thickness mode was more evident when a/h < 2. With regard to the relative position of impact source and sensing point to the defect, the flexural modes dominate even when either the loading or sensing point was over the delamination defect. However, the thickness mode prevails when both the impacting and sensing points are over the solid region beyond the delamination area.

A Study on the Development of Tube-to-Support Nonlinear Impact Analysis Model (튜브와 지지대 사이의 비선형 충격해설모델 개발에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.515-524
    • /
    • 1995
  • Tubes in heat exchanger of fuel rods in reactor core are supported at intemediate point by support p0lates or springs. Current practice is, in case of heat exchanger, to allow clearance between tube and support plate for design and manufacturing consideration. And in case of fuel rod the clearance in support point can be generated due to the support spring force relaxation. Flow-induced vibration of a tube can cause it to impact or rub against support plate or against adjacent tubes and can result in fretting-wear. The tube-to- support dynamic interaction is used to relate experimental wear data from single-span test rigs to real multi-span heat exchanger configurations. The dynamic interaction cna be measured during experimental wear tests. However, the dynamic interaction is difficult to measure in real heat exchangers and, therefore, analytical techniques are required to estimate this interaction. This paper describels the nonlinear impact model of DAGS(Dynamic Analysis of Gapped Structure) code which simulates the tube response to external sinusodial or step excitation and predicts tube motion and tube-to-support dynamic interaction. Three experimental measurements-two single span rods excited by sinusodial force and a two span rod impacted by a steel ball are compared from the simulation nonlinear model of DAGS code. The simulation results from DAGS code are in good agreement with measurements. Therefore, the developed model of DAGS code is good analytical tool for estimating tube-to-support dynamic interaction in real heat exchangers.

  • PDF

Analysis of Average Neutral Point Current in 3-level NPC Converter under Generalized Unbalanced AC Input Condition

  • Jung, Kyungsub;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.151-152
    • /
    • 2016
  • This paper presents a neutral point deviation compensating control algorithm applied to a 3-level NPC converter under generalized unbalanced ac input conditions. The neutral point deviation is analyzed with a focus on the current flowing out of or into the neutral point of the dc-link in 3-level NPC converter. The model of neutral point deviation and neutral current are also constructed. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converter and its impact on neutral point deviation. This paper includes the harmonic characteristic of neutral point current under various imbalance AC operating conditions.

  • PDF

Influence of Residual Bending Fatigue Strength on Impact Damage of CFRP Composites (CFRP 적층판의 충격손상이 잔류 굽힘 피로강도에 미치는 영향)

  • Yang, Yong Jun;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.7-12
    • /
    • 2015
  • CFRP composites are used as primary structural members in various industrial fields because their specific strength and specific stiffness are excellent in comparison to conventional metals. Their usage is expanding to high added-value industrial fields because they are more than 50% lighter than metals, and have excellent heat resistance and wear resistance. However, when CFRP composites suffer impact damage, destruction of fiber and interface delamination occur. This causes an unexpected deterioration of strength, and for this reason it is very difficult to ensure the reliability of the excellent mechanical properties. Therefore, for the destruction mechanism in bending with impact damage, this study investigated the reinforcement data regarding various external loads by identifying the consequential strength deterioration. Specimens were damaged by impact with a steel ball propelled by air pressure. Decrease in bending strength caused by the tension and compression of the impact side, and depending on the lamination direction of fiber and interface inside the specimen. From the bending test it was found that the bending strength reduced when the impact energy increased. Especially in the case of compression on the impact side, as tensile stress occurred at the damage starting point, causing rapid failure and a substantially reduced failure strength.

Establishing Evaluation Modifiers for the Annoyance Responses to Heavyweight Impact Noise (Annoyance 반응에 의한 중량충격음 평가척도 구성)

  • Kim, Kyoung-Ho;Jeong, Jeong-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.917-917
    • /
    • 2003
  • The auditory experiments based on the subjective annoyance responses were undertaken for the establishment of the adverb modifiers of the heavy-weight impact noises. The standard heavy weight impact noise, impact ball noise and adult walking noise were recorded by dummy head at a newly-built apartment and were presented to the subjects by headphones. The levels of the three impact noises were varied from 30 to 60㏈(A) and the subjects matched one of the adverb modifiers to each level of the noise sources. As a result, seven scale modifiers were established and the intervals between the modifiers were found as equal. In addition, it was found that the lower annoyance noise limits for the heavyweight impact, impact ball and walking were 40-45㏈ (L$\sub$I, Fmax. AW), which is 6㏈ lower than in the previous study. The background noise level was as low as 21㏈(A) in the test booth, therefore, the testing conditions need to be concerned for evaluation of floor impact noise.

  • PDF

A Study of Computer Models Used in Environmental Impact Assessment II : Hydrologic and Hydraulic Models (환경영향평가에 사용되는 컴퓨터 모델에 관한 연구 II : 수리수문 모델)

  • Park, Seok-Soon;Na, Eun-Hye
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.1
    • /
    • pp.25-37
    • /
    • 2000
  • This paper presents a study of hydrological and hydraulic model applications in environmental impact statements which were submitted during recent years in Korea. In many cases (almost 70 %), the hydrological and hydraulic changes were neglected from the impact identification processes, even if the proposed actions would cause significant impacts on those environmental items. In most cases where the hydrological and hydraulic impacts were predicted, simple equations were used as an impact prediction tool. Computer models were used in very few cases(5%). Even in these few cases, models were improperly applied and thus the predicted impacts would not be reliable. The improper applications and the impact neglections are attributed to the fact that there are no available model application guidelines as well as no requirements by the review agency. The effects of mitigation measures were not analyzed in most cases. Again, these can be attributed to no formal guidelines available for impact predictions until now. A brief guideline is presented in this paper. This study suggested that the model application should be required and guided in detail by the review agency. It is also suggested that the hydrological and hydraulic items shoud be integrated with the water quality predictions in future, since the non-point source pollution runoff is based on the hydrologic phenomena and the water quality reactions on the hydraulic nature.

  • PDF

Study on the response of circular thin plate under low velocity impact

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-218
    • /
    • 2015
  • In this paper, forming of fully clamped circular plate by using low velocity impact system has been investigated. This system consists of liquid shock tube and gravity drop hammer. A series of test on mild steel and aluminum alloy plates has been done. The effect of varying both impact load and the plate material on the deflection are described. This paper also presents a simple model to prediction of mid-point deflection of circular plate by using input-output experimental data. In this way, singular value decomposition (SVD) method is used in conjunction with dimensionless number incorporated in such complex process. The results of obtained model have very good agreement with experimental data and it provides a way of studying and understanding the plastic deformation of impact loads.

A Study of Arrow Performance using Artificial Neural Network (Artificial Neural Network를 이용한 화살 성능에 대한 연구)

  • Jeong, Yeongsang;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.548-553
    • /
    • 2014
  • In order to evaluate the performance of arrow that manufactures through production process, it is used that personal experiences such as hunters who have been using bow and arrow for a long time, technicians who produces leisure and sports equipment, and experts related with this industries. Also, the intensity of arrow's impact point which obtains from repeated shooting experiments is an important indicator for evaluating the performance of arrow. There are some ongoing researches for evaluating performance of arrow using intensity of the arrow's impact point and the arrow's flying image that obtained from high-speed camera. However, the research that deals with mutual relation between distribution of the arrow's impact point and characteristics of the arrow (length, weight, spine, overlap, straightness) is not enough. Therefore, this paper suggests both the system that could describes the distribution of the arrow's impact point into numerical representation and the correlation model between characteristics of arrow and impact points. The inputs of the model are characteristics of arrow (spine, straightness). And the output is MAD (mean absolute distance) of triangular shaped coordinates that could be obtained from 3 times repeated shooting by changing knock degree 120. The input-output data is collected for learning the correlation model, and ANN (artificial neural network) is used for implementing the model.