• Title/Summary/Keyword: point matching

Search Result 840, Processing Time 0.028 seconds

Investigation of Sensor Models for Precise Geolocation of GOES-9 Images (GOES-9 영상의 정밀기하보정을 위한 여러 센서모델 분석)

  • Hur, Dong-Seok;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.285-294
    • /
    • 2006
  • A numerical formula that presents relationship between a point of a satellite image and its ground position is called a sensor model. For precise geolocation of satellite images, we need an error-free sensor model. However, the sensor model based on GOES ephemeris data has some error, in particular after Image Motion Compensation (IMC) mechanism has been turned off. To solve this problem, we investigated three sensor models: collinearity model, direct linear transform (DLT) model and orbit-based model. We applied matching between GOES images and global coastline database and used successful results as control points. With control points we improved the initial image geolocation accuracy using the three models. We compared results from three sensor models. As a result, we showed that the orbit-based model is a suitable sensor model for precise geolocation of GOES-9 Images.

A Study on Multi Fault Detection for Turbo Shaft Engine Components of UAV Using Neural Network Algorithms

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • Because the types and severities of most engine faults are various and complex, it is not easy that the conventional model based fault detection approach like the GPA(Gas Path Analysis) method can monitor all engine fault conditions. Therefore this study proposed newly a diagnostic algorithm for isolating and diagnosing effectively the faulted components of the smart UAV propulsion system, which has been developed by KARI(Korea Aerospace Research Institute), using the fuzzy logic and the neural network algorithms. A precise performance model should be needed to perform the model-based diagnostics. The based engine performance model was developed using SIMULINK. For the work and mass flow matching between components of the steady-state simulation, the state-flow library was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer's performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. The diagnosis procedure of the proposed diagnostic system has the following steps. Firstly after obtaining database of fault patterns through performance simulation, then secondly the diagnostic system was trained by the FFBP networks. Thirdly after analyzing the trend of the measuring parameters due to fault patterns, then fourthly faulted components were isolated using the fuzzy logic. Finally magnitudes of the detected faults were obtained by the trained neural networks. Because the detected faults have almost same as degradation values of the implanted fault pattern, it was confirmed that the proposed diagnostic system can detect well the engine faults.

  • PDF

Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring (센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출)

  • Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

Validity Analysis of Korean Food for Launching Halal Market in Egypt Using the Kano-Timko Model with Conjoint Anlaysis (Kano-Timko모델과 컨조인트 분석을 활용한 한국 식품의 이집트 할랄 시장에 진출을 위한 타당성 분석)

  • Son, Young Seok;Lee, Byong Seo;Na, Kyung Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.2
    • /
    • pp.345-365
    • /
    • 2019
  • Purpose: We consider export of Korea for Muslim population of Cairo residents in Egypt. Product instant cup noodle and yuzu tea are mainly focused on Kano model and Timko's customer satisfaction factor (CS - Coefficient) analysis and conjoint analysis. Methods: Based on the evaluation and conjoint analysis, cluster analysis was additionally applied to further exploratory research as to what kind of population the target customer has. A total of 120 people, each 60 people each, were prosecuted for Muslim women, middle middle class who had over 3,000 Korean won annual income for that study, and in Cairo in August 18. Results: The Kano analysis result Instant cup noodles act as attractive elements for packaging state, cooking method, smell and convenience, and Yuzu tea acted as an attractive element of taste, eating method, raw materials, efficacy, packaging form. Customer satisfaction factor, instant cup noodles, capacity and noodle thickness was a factor of indifference in Kano analysis, but acted as an attractive factor, the way to eat citron tea was classified as a factor of indifference. Conclusion: In the case of instant cup noodles, we first set up the taste of chicken-based soup with high appreciation as a whole, a group that likes chicken-based soup taste and oil noodles for each market segment, a taste of beef based soup And popular group that likes raw noodles Appears that diversification is necessary, and it has been found that it is necessary to develop a product type by hierarchy and marketing with different size priority from group packaging container. In the case of Yuzu tea, it is indispensable to emphasize the efficacy, in particular, energy recovery preference appears high, appealing point matching the needs of energy recovery is necessary, release the citrus fruit as a product without buckwheat in Bisson Ho, the packaging container, The group that likes cups and sticks is different and we found that it is necessary to prepare all two types.

Utility of False Profile View for Screening of Ischiofemoral Impingement

  • Kwak, Dae-Kyung;Yang, Ick-Hwan;Kim, Sungjun;Lee, Sang-Chul;Park, Kwan-Kyu;Lee, Woo-Suk
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.219-225
    • /
    • 2018
  • Purpose: Ischiofemoral impingement (IFI)-primarily diagnosed by magnetic resonance imaging (MRI)-is an easily overlooked disease due to its low incidence. The purpose of this study was to evaluate the usefulness of false profile view as a screening test for IFI. Materials and Methods: Fifty-eight patients diagnosed with IFI between June 2013 and July 2017 were enrolled in this retrospective study. A control group (n=58) with matching propensity scores (age, gender, and body mass index) were also included. Ischiofemoral space (IFS) was measured as the shortest distance between the lateral cortex of the ischium and the medial cortex of lesser trochanter in weight bearing hip anteroposterior (AP) view and false profile view. MRI was used to measure IFS and quadratus femoris space (QFS). The receiver operating characteristics (ROC), area under the ROC curve (AUC) and cutoff point of the IFS were measured by false profile images, and the correlation between the IFS and QFS was analyzed using the MRI scans. Results: In the false profile view and hip AP view, patients with IFI had significantly decreased IFS (P<0.01). In the false profile view, ROC AUC (0.967) was higher than in the hip AP view (0.841). Cutoff value for differential diagnosis of IFI in the false profile view was 10.3 mm (sensitivity, 88.2%; specificity, 88.4%). IFS correlated with IFS (r=0.744) QFS (0.740) in MRI and IFS (0.621) in hip AP view (P<0.01). Conclusion: IFS on false profile view can be used as a screening tool for potential IFI.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.

How adjustment could affect internal and marginal adaptation of CAD/CAM crowns made with different materials

  • Hasanzade, Mahya;Moharrami, Mohammad;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.344-350
    • /
    • 2020
  • PURPOSE. Recently introduced hybrid and reinforced glass ceramic computer-aided design/computer-aided manufacturing (CAD/CAM) materials have been used for full-coverage restorations. However; the effect of adjustment and type of materials on internal and marginal adaptation are unknown. This study aimed to evaluate and compare the marginal and internal adaptations of crowns made of three different CAD/CAM materials before and after adjustment. MATERIALS AND METHODS. One acrylic resin maxillary first molar was prepared and served as the master die. Thirty-six restorations were fabricated using CAD/CAM system (CEREC Omnicam, MCXL) with three materials including lithium disilicate (IPS e.max CAD), zirconia-reinforced lithium silicate (Suprinity), and hybrid ceramic (Enamic). Internal and marginal adaptations were evaluated with the reference point matching technique before and after adjustment. The data were analyzed using mixed ANOVA considering α=.05 as the significance level. RESULTS. The effect of adjustment and its interaction with the restoration material were significant for marginal, absolute marginal, and occlusal discrepancies (P<.05). Before adjustment, Suprinity had lower marginal discrepancies than IPS e.max CAD (P=.18) and Enamic (P=.021); though no significant differences existed after adjustment. CONCLUSION. Within the limitations of this study, crowns fabricated from IPS e.max CAD and Suprinity resulted in slightly better adaptation compared with Enamic crowns before adjustment. However, marginal, axial, and occlusal discrepancies were similar among all materials after the adjustment.

A Study On the Theory of 'Pungent and Sweet becoming Yang' and 'Sour and Sweet becoming Yin' (신감화양(辛甘化陽), 산감화음(酸甘化陰)의 이론에 대한 고찰)

  • Yun, Ki-ryoung
    • Journal of Korean Medical classics
    • /
    • v.35 no.2
    • /
    • pp.33-49
    • /
    • 2022
  • Objectives : This paper aims to investigate the role of the sweet flavor within the contexts of 'pungent and sweet becoming Yang' and 'sour and sweet becoming Yin' and the meaning of the two concepts. Methods : Related contents in databases including the Siqu Quanshu were searched with 'pungent and sweet becoming Yang' and 'sour and sweet becoming Yin', whose understanding and application were examined. Results & Conclusions : The theories of 'pungent and sweet becoming Yang' and 'sour and sweet becoming Yin' originate from Cheng Wuji's comparison of the Gancaoqianjiangtang and Shaoyaogancaotang in the 29th verse of the Shanghanlun. The two terms first appeared in the Qing period among the Wenbing school. In other medical texts, the combination with sweet flavors could be found with salty, bitter and bland flavors other than with pungent and sour. The role of the sweet flavor in 'pungent and sweet becoming Yang' and 'sour and sweet becoming Yin' is to accomplish the dispersing and converging action slowly and effectively, by supplying energy in small amounts preventing it from happening too quickly, corresponding to its Earth nature of the Five Elements which harmonizes the Yin and Yang. While 'becoming Yin' and 'becoming Yang' could be understood as tonifying Yin and Yang, it could also be understood as 'doing Yin' and 'doing Yang', The specific actions differ according to herb and mixture. The point of distinction between the aforementioned tonification and that of medicinals that have Yin and Yang tonifying properties is that due to the other flavor that is matched with the sweet flavor, Qi is given motility which allows for tonification without stagnation.

Laser Resurfacing after Facial Free Flap Reconstruction

  • Kim, Beom-Jun;Lee, Yun-Whan;You, Hi-Jin;Hwang, Na-Hyun;Kim, Deok-Woo
    • Medical Lasers
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • Background and Objectives Skin and soft tissue defects can be treated according to a range of strategies, such as local flap, skin graft, biological dressing, or free flap. On the other hand, free tissue transfer usually leaves a distinct scar with an inconsistency of color or hypertrophy. This problem is highlighted if the defect is located on the face, which could have devastating effects on a patient's psychosocial health. Materials and Methods The authors used an erbium : yttrium-aluminum-garnet (Er:YAG) laser to resurface the free flap skin and match the color with the surrounding facial skin. This study evaluated the effectiveness of laser skin resurfacing on the harmonious color matching of transferred flap. Patients who had undergone laser resurfacing on facial flap skin between January 2014 and December 2018 were reviewed retrospectively. An ablative 2,940-nm fractional Er:YAG laser treatment was delivered to the entire flap skin at 21 J/cm2 with the treatment end-point of pinpoint bleeding. Several months later, the clinical photographs were analyzed. The L*a*b* color co-ordinates of both the flap and surrounding normal skin were measured using Adobe Photoshop. The L*a*b* color difference (ΔE) for the scar and normal surrounding skin were calculated using the following equation: ${\Delta}E=\sqrt{({\Delta}L)^2+({\Delta}a)^2+({\Delta}b)^2}$ Results All five patients were satisfied with the more natural appearance of the flaps. The ΔE values decreased significantly from the pre-treatment mean value of 19.64 to the post-treatment mean value of 11.39 (Wilcoxon signed-rank test, p = 0.043). Conclusion Ablative laser resurfacing can improve the aesthetic outcome of free tissue transfer on the face.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.