• Title/Summary/Keyword: point matching

Search Result 840, Processing Time 0.027 seconds

A Study on Automatic Precision Landing for Small UAV's Industrial Application (소형 UAV의 산업 응용을 위한 자동 정밀 착륙에 관한 연구)

  • Kim, Jong-Woo;Ha, Seok-Wun;Moon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.27-36
    • /
    • 2017
  • In almost industries, such as the logistics industry, marine fisheries, agriculture, industry, and services, small unmanned aerial vehicles are used for aerial photographing or closing flight in areas where human access is difficult or CCTV is not installed. Also, based on the information of small unmanned aerial photographing, application research is actively carried out to efficiently perform surveillance, control, or management. In order to carry out tasks in a mission-based manner in which the set tasks are assigned and the tasks are automatically performed, the small unmanned aerial vehicles must not only fly steadily but also be able to charge the energy periodically, In addition, the unmanned aircraft need to land automatically and precisely at certain points after the end of the mission. In order to accomplish this, an automatic precision landing method that leads landing by continuously detecting and recognizing a marker located at a landing point from a video shot of a small UAV is required. In this paper, it is shown that accurate and stable automatic landing is possible even if simple template matching technique is applied without using various recognition methods that require high specification in using low cost general purpose small unmanned aerial vehicle. Through simulation and actual experiments, the results show that the proposed method will be made good use of industrial fields.

A Depth-map Coding Method using the Adaptive XOR Operation (적응적 배타적 논리합을 이용한 깊이정보 맵 코딩 방법)

  • Kim, Kyung-Yong;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.274-292
    • /
    • 2011
  • This paper proposes an efficient coding method of the depth-map which is different from the natural images. The depth-map are so smooth in both inner parts of the objects and background, but it has sharp edges on the object-boundaries like a cliff. In addition, when a depth-map block is decomposed into bit planes, the characteristic of perfect matching or inverted matching between bit planes often occurs on the object-boundaries. Therefore, the proposed depth-map coding scheme is designed to have the bit-plane unit coding method using the adaptive XOR method for efficiently coding the depth-map images on the object-boundary areas, as well as the conventional DCT-based coding scheme (for example, H.264/AVC) for efficiently coding the inside area images of the objects or the background depth-map images. The experimental results show that the proposed algorithm improves the average bit-rate savings as 11.8 % ~ 20.8% and the average PSNR (Peak Signal-to-Noise Ratio) gains as 0.9 dB ~ 1.5 dB in comparison with the H.264/AVC coding scheme. And the proposed algorithm improves the average bit-rate savings as 7.7 % ~ 12.2 % and the average PSNR gains as 0.5 dB ~ 0.8 dB in comparison with the adaptive block-based depth-map coding scheme. It can be confirmed that the proposed method improves the subjective quality of synthesized image using the decoded depth-map in comparison with the H.264/AVC coding scheme. And the subjective quality of the proposed method was similar to the subjective quality of the adaptive block-based depth-map coding scheme.

Study on the Overlapping Effect of Certification Policies: Focusing on the ICT Industry (벤처인증정책과 이노비즈인증정책의 중복효과에 대한 연구: ICT산업을 중심으로)

  • Oh, Seunghwan;Shim, Dongnyok;Kim, Kyunam
    • Journal of Korea Technology Innovation Society
    • /
    • v.18 no.2
    • /
    • pp.358-386
    • /
    • 2015
  • The aim of this paper is to evaluate policy impact of Inno-biz verification and Venture verification, especially focusing on the complementarity effect according to the overlapped support in Korean ICT industry. Alongside the implementation of various government innovation policies, discussions regarding evaluations of such policies have been consistently undertaken in economics, because it is very important to evaluate whether public policies have played a proper role. However, one of the distinguished point of this research from previous studies is that this paper not only includes evaluations of a single policy, but also the discussion about interaction between different innovation policies. The main result of this paper is that, in the case of overlapping homogeneous policies such as Inno-biz and venture verification, the complementarity effect is negative. Compared with previous studies, the uniqueness of this research is as follows. First, deviating from the view of previous studies that focused on the evaluation of a single policy, this paper has considered interactions and the complementarity effect of innovation policy through "policy mix," an economic term. Second, based on this concept, the paper suggests an analysis framework for the evaluation of interactions and the complementarity effect of innovation policy.

Image Mosaicking Using Feature Points Based on Color-invariant (칼라 불변 기반의 특징점을 이용한 영상 모자이킹)

  • Kwon, Oh-Seol;Lee, Dong-Chang;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.89-98
    • /
    • 2009
  • In the field of computer vision, image mosaicking is a common method for effectively increasing restricted the field of view of a camera by combining a set of separate images into a single seamless image. Image mosaicking based on feature points has recently been a focus of research because of simple estimation for geometric transformation regardless distortions and differences of intensity generating by motion of a camera in consecutive images. Yet, since most feature-point matching algorithms extract feature points using gray values, identifying corresponding points becomes difficult in the case of changing illumination and images with a similar intensity. Accordingly, to solve these problems, this paper proposes a method of image mosaicking based on feature points using color information of images. Essentially, the digital values acquired from a digital color camera are converted to values of a virtual camera with distinct narrow bands. Values based on the surface reflectance and invariant to the chromaticity of various illuminations are then derived from the virtual camera values and defined as color-invariant values invariant to changing illuminations. The validity of these color-invariant values is verified in a test using a Macbeth Color-Checker under simulated illuminations. The test also compares the proposed method using the color-invariant values with the conventional SIFT algorithm. The accuracy of the matching between the feature points extracted using the proposed method is increased, while image mosaicking using color information is also achieved.

A Study on Pipe Model Registration for Augmented Reality Based O&M Environment Improving (증강현실 기반의 O&M 환경 개선을 위한 배관 모델 정합에 관한 연구)

  • Lee, Won-Hyuk;Lee, Kyung-Ho;Lee, Jae-Joon;Nam, Byeong-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2019
  • As the shipbuilding and offshore plant industries grow larger and more complex, their maintenance and inspection systems become more important. Recently, maintenance and inspection systems based on augmented reality have been attracting much attention for improving worker's understanding of work and efficiency, but it is often difficult to work with because accurate matching between the augmented model and reality information is not. To solve this problem, marker based AR technology is used to attach a specific image to the model. However, the markers get damaged due to the characteristic of the shipbuilding and offshore plant industry, and the camera needs to be able to detect the entire marker clearly, and thus requires sufficient space to exist between the operator. In order to overcome the limitations of the existing AR system, in this study, a markerless AR was adopted to accurately recognize the actual model of the pipe system that occupies the most processes in the shipbuilding and offshore plant industries. The matching methodology. Through this system, it is expected that the twist phenomenon of the augmented model according to the attitude of the real worker and the limited environment can be improved.

Comparison of Open Source based Algorithms and Filtering Methods for UAS Image Processing (오픈소스 기반 UAS 영상 재현 알고리즘 및 필터링 기법 비교)

  • Kim, Tae Hee;Lee, Yong Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.155-168
    • /
    • 2020
  • Open source is a key growth engine of the 4th industrial revolution, and the continuous development and use of various algorithms for image processing is expected. The purpose of this study is to examine the effectiveness of the UAS image processing open source based algorithm by comparing and analyzing the water reproduction and moving object filtering function and the time required for data processing in 3D reproduction. Five matching algorithms were compared based on recall and processing speed through the 'ANN-Benchmarks' program, and HNSW (Hierarchical Navigable Small World) matching algorithm was judged to be the best. Based on this, 108 algorithms for image processing were constructed by combining each methods of triangulation, point cloud data densification, and surface generation. In addition, the 3D reproduction and data processing time of 108 algorithms for image processing were studied for UAS (Unmanned Aerial System) images of a park adjacent to the sea, and compared and analyzed with the commercial image processing software 'Pix4D Mapper'. As a result of the study, the algorithms that are good in terms of reproducing water and filtering functions of moving objects during 3D reproduction were specified, respectively, and the algorithm with the lowest required time was selected, and the effectiveness of the algorithm was verified by comparing it with the result of 'Pix4D Mapper'.

Design of Port Security System Using Deep Learning and Object Features (딥러닝과 객체 특징점을 활용한 항만 보안시스템 설계)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.50-53
    • /
    • 2022
  • Recently, there have been cases in which counterfeit foreign ships have entered and left domestic ports several times. Vessels have a ship-specific serial number given by the International Maritime Organization (IMO) to identify the vessel, and IMO marking is mandatory on all ships built since 2004. In the case of airports and ports, which are representative logistics platforms, a security system is essential, but it is difficult to establish a security system at a port and there are many blind spots, which can cause security problems due to insufficient security systems. In this paper, a port security system is designed using deep learning object recognition and OpenCV. The security system process extracts the IMO number of the ship after recognizing the object when entering the ship, determines whether it is the same ship through feature point matching for ships with entry records, and stores the ship image and IMO number in the entry/exit DB for the first arrival vessel. Through the system of this paper, port security can be strengthened by improving the efficiency and system of port logistics by increasing the efficiency of port management personnel and reducing incidental costs caused by unauthorized entry.

  • PDF

A Proposal of a Keyword Extraction System for Detecting Social Issues (사회문제 해결형 기술수요 발굴을 위한 키워드 추출 시스템 제안)

  • Jeong, Dami;Kim, Jaeseok;Kim, Gi-Nam;Heo, Jong-Uk;On, Byung-Won;Kang, Mijung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • To discover significant social issues such as unemployment, economy crisis, social welfare etc. that are urgent issues to be solved in a modern society, in the existing approach, researchers usually collect opinions from professional experts and scholars through either online or offline surveys. However, such a method does not seem to be effective from time to time. As usual, due to the problem of expense, a large number of survey replies are seldom gathered. In some cases, it is also hard to find out professional persons dealing with specific social issues. Thus, the sample set is often small and may have some bias. Furthermore, regarding a social issue, several experts may make totally different conclusions because each expert has his subjective point of view and different background. In this case, it is considerably hard to figure out what current social issues are and which social issues are really important. To surmount the shortcomings of the current approach, in this paper, we develop a prototype system that semi-automatically detects social issue keywords representing social issues and problems from about 1.3 million news articles issued by about 10 major domestic presses in Korea from June 2009 until July 2012. Our proposed system consists of (1) collecting and extracting texts from the collected news articles, (2) identifying only news articles related to social issues, (3) analyzing the lexical items of Korean sentences, (4) finding a set of topics regarding social keywords over time based on probabilistic topic modeling, (5) matching relevant paragraphs to a given topic, and (6) visualizing social keywords for easy understanding. In particular, we propose a novel matching algorithm relying on generative models. The goal of our proposed matching algorithm is to best match paragraphs to each topic. Technically, using a topic model such as Latent Dirichlet Allocation (LDA), we can obtain a set of topics, each of which has relevant terms and their probability values. In our problem, given a set of text documents (e.g., news articles), LDA shows a set of topic clusters, and then each topic cluster is labeled by human annotators, where each topic label stands for a social keyword. For example, suppose there is a topic (e.g., Topic1 = {(unemployment, 0.4), (layoff, 0.3), (business, 0.3)}) and then a human annotator labels "Unemployment Problem" on Topic1. In this example, it is non-trivial to understand what happened to the unemployment problem in our society. In other words, taking a look at only social keywords, we have no idea of the detailed events occurring in our society. To tackle this matter, we develop the matching algorithm that computes the probability value of a paragraph given a topic, relying on (i) topic terms and (ii) their probability values. For instance, given a set of text documents, we segment each text document to paragraphs. In the meantime, using LDA, we can extract a set of topics from the text documents. Based on our matching process, each paragraph is assigned to a topic, indicating that the paragraph best matches the topic. Finally, each topic has several best matched paragraphs. Furthermore, assuming there are a topic (e.g., Unemployment Problem) and the best matched paragraph (e.g., Up to 300 workers lost their jobs in XXX company at Seoul). In this case, we can grasp the detailed information of the social keyword such as "300 workers", "unemployment", "XXX company", and "Seoul". In addition, our system visualizes social keywords over time. Therefore, through our matching process and keyword visualization, most researchers will be able to detect social issues easily and quickly. Through this prototype system, we have detected various social issues appearing in our society and also showed effectiveness of our proposed methods according to our experimental results. Note that you can also use our proof-of-concept system in http://dslab.snu.ac.kr/demo.html.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

A New Image Quality Optimization System for Mobile TFT-LCD (모바일 TFT-LCD를 위한 새로운 화질 최적화 시스템)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.734-737
    • /
    • 2008
  • This paper presents a new automatic TFT-LCD image quality optimization system. We also have developed new algorithms using 6-point programmable matching technique with reference gamma curve, and automatic power setting sequence. It optimizes automatically gamma adjustment and power setting registers in mobile TFT-LCD driver IC to reduce gamma correction error, adjusting time, and flicker. Developed algorithms and programs are generally applicable for most of the TFT-LCD modules. The proposed optimization system contains module-under-test (MUT, TFT-LCD module), control program, multimedia display tester for measuring luminance and flicker, and control board for interface between PC and TFT-LCD module. The control board is designed with DSP, and it supports various interfaces such as RGB and CPU. Developed automatic image quality optimization system showed significantly reduced gamma adjusting time, reduced flicker, and much less average gamma error than competing system. We believe that the proposed system is very useful to provide high image quality TFT-LCD and to reduce developing process time using optimized gamma-curve setting and automatic power setting.

  • PDF