• Title/Summary/Keyword: point matching

Search Result 843, Processing Time 0.024 seconds

Generation and Detection of Cranial Landmark

  • Heo, Suwoong;Kang, Jiwoo;Kim, Yong Oock;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Purpose When a surgeon examines the morphology of skull of patient, locations of craniometric landmarks of 3D computed tomography(CT) volume are one of the most important information for surgical purpose. The locations of craniometric landmarks can be found manually by surgeon from the 3D rendered volume or 2D sagittal, axial, and coronal slices which are taken by CT. Since there are many landmarks on the skull, finding these manually is time-consuming, exhaustive, and occasionally inexact. These inefficiencies raise a demand for a automatic localization technique for craniometric landmark points. So in this paper, we propose a novel method through which we can automatically find these landmark points, which are useful for surgical purpose. Materials and Methods At first, we align the experimental data (CT volumes) using Frankfurt Horizontal Plane (FHP) and Mid Sagittal Plane(MSP) which are defined by 3 and 2 cranial landmark points each. The target landmark of our experiment is the anterior nasal spine. Prior to constructing a statistical cubic model which would be used for detecting the location of the landmark from a given CT volume, reference points for the anterior nasal spine were manually chosen by a surgeon from several CT volume sets. The statistical cubic model is constructed by calculating weighted intensity means of these CT sets around the reference points. By finding the location where similarity function (squared difference function) has the minimal value with this model, the location of the landmark can be found from any given CT volume. Results In this paper, we used 5 CT volumes to construct the statistical cubic model. The 20 CT volumes including the volumes, which were used to construct the model, were used for testing. The range of age of subjects is up to 2 years (24 months) old. The found points of each data are almost close to the reference point which were manually chosen by surgeon. Also it has been seen that the similarity function always has the global minimum at the detection point. Conclusion Through the experiment, we have seen the proposed method shows the outstanding performance in searching the landmark point. This algorithm would make surgeons efficiently work with morphological informations of skull. We also expect the potential of our algorithm for searching the anatomic landmarks not only cranial landmarks.

Robust Orientation Estimation Algorithm of Fingerprint Images (노이즈에 강인한 지문 융선의 방향 추출 알고리즘)

  • Lee, Sang-Hoon;Lee, Chul-Han;Choi, Kyoung-Taek;Kim, Jai-Hie
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.55-63
    • /
    • 2008
  • Ridge orientations of fingerprint image are crucial informations in many parts of fingerprint recognition such as enhancement, matching and classification. Therefore it is essential to extract the ridge orientations of image accurately because it directly affects the performance of the system. The two main properties of ridge orientation are 1) global characteristic(gradual change in whole part of fingerprint) and 2) local characteristic(abrupt change around core and delta points). When we only consider the local characteristic, estimated ridge orientations are well around singular points but not robust to noise. When the global characteristic is only considered, to estimate ridge orientation is robust to noise but cannot represent the orientation around singular points. In this paper, we propose a novel method for estimating ridge orientation which represents local characteristic specifically as well as be robust to noise. We reduce the noise caused by scar using iterative outlier rejection. We apply adaptive measurement resolution in each fingerprint area to estimate the ridge orientation around singular points accurately. We evaluate the performance of proposed method using synthetic fingerprint and FVC 2002 DB. We compare the accuracy of ridge orientation. The performance of fingerprint authentication system is evaluated using FVC 2002 DB.

Accurate Camera Calibration Method for Multiview Stereoscopic Image Acquisition (다중 입체 영상 획득을 위한 정밀 카메라 캘리브레이션 기법)

  • Kim, Jung Hee;Yun, Yeohun;Kim, Junsu;Yun, Kugjin;Cheong, Won-Sik;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.919-927
    • /
    • 2019
  • In this paper, we propose an accurate camera calibration method for acquiring multiview stereoscopic images. Generally, camera calibration is performed by using checkerboard structured patterns. The checkerboard pattern simplifies feature point extraction process and utilizes previously recognized lattice structure, which results in the accurate estimation of relations between the point on 2-dimensional image and the point on 3-dimensional space. Since estimation accuracy of camera parameters is dependent on feature matching, accurate detection of checkerboard corner is crucial. Therefore, in this paper, we propose the method that performs accurate camera calibration method through accurate detection of checkerboard corners. Proposed method detects checkerboard corner candidates by utilizing 1-dimensional gaussian filters with succeeding corner refinement process to remove outliers from corner candidates and accurately detect checkerboard corners in sub-pixel unit. In order to verify the proposed method, we check reprojection errors and camera location estimation results to confirm camera intrinsic parameters and extrinsic parameters estimation accuracy.

Development of Vehicle Arrival Time Prediction Algorithm Based on a Demand Volume (교통수요 기반의 도착예정시간 산출 알고리즘 개발)

  • Kim, Ji-Hong;Lee, Gyeong-Sun;Kim, Yeong-Ho;Lee, Seong-Mo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • The information on travel time in providing the information of traffic to drivers is one of the most important data to control a traffic congestion efficiently. Especially, this information is the major element of route choice of drivers, and based on the premise that it has the high degree of confidence in real situation. This study developed a vehicle arrival time prediction algorithm called as "VAT-DV" for 6 corridors in total 6.1Km of "Nam-san area trffic information system" in order to give an information of congestion to drivers using VMS, ARS, and WEB. The spatial scope of this study is 2.5km~3km sections of each corridor, but there are various situations of traffic flow in a short period because they have signalized intersections in a departure point and an arrival point of each corridor, so they have almost characteristics of interrupted and uninterrupted traffic flow. The algorithm uses the information on a demand volume and a queue length. The demand volume is estimated from density of each points based on the Greenburg model, and the queue length is from the density and speed of each point. In order to settle the variation of the unit time, the result of this algorithm is strategically regulated by importing the AVI(Automatic Vehicle Identification), one of the number plate matching methods. In this study, the AVI travel time information is composed by Hybrid Model in order to use it as the basic parameter to make one travel time in a day using ILD to classify the characteristics of the traffic flow along the queue length. According to the result of this study, in congestion situation, this algorithm has about more than 84% degree of accuracy. Specially, the result of providing the information of "Nam-san area traffic information system" shows that 72.6% of drivers are available.

Applicability Assessment of Disaster Rapid Mapping: Focused on Fusion of Multi-sensing Data Derived from UAVs and Disaster Investigation Vehicle (재난조사 특수차량과 드론의 다중센서 자료융합을 통한 재난 긴급 맵핑의 활용성 평가)

  • Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.841-850
    • /
    • 2019
  • The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.

A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data (드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구)

  • Chan-hwi, Shin;Gyeong-jo, Min;Gyeong-Gyu, Kim;PuReun, Jeon;Hoon, Park;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.15-26
    • /
    • 2022
  • With the recent increase in old and dangerous buildings, the demand for technology in the field of structure demolition is rapidly increasing. In particular, in the case of structures with severe deformation of damage, there is a risk of deterioration in stability and disaster due to changes in the load distribution characteristics in the structure, so rapid structure demolition technology that can be efficiently dismantled in a short period of time is drawing attention. However, structural deformation such as unauthorized extension or illegal remodeling occurs frequently in many old structures, which is not reflected in structural information such as building drawings, and acts as an obstacle in the demolition design process. In this study, as an effective way to overcome the discrepancy between the structural information of old structures and the actual structure, access to actual structures through 3D modeling was considered. 3D point cloud data inside and outside the building were obtained through LiDAR and drone photography for buildings scheduled to be blasting demolition, and precision matching between the two spatial data groups was performed using an open-source based spatial information construction system. The 3D structure model was completed by importing point cloud data matched with 3D modeling software to create structural drawings for each layer and forming each member along the structure slab, pillar, beam, and ceiling boundary. In addition, the modeling technique proposed in this study was verified by comparing it with the actual measurement value for selected structure member.

An application of MMS in precise inspection for safety and diagnosis of road tunnel (도로터널에서 MMS를 이용한 정밀안전진단 적용 사례)

  • Jinho Choo;Sejun Park;Dong-Seok Kim;Eun-Chul Noh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.113-128
    • /
    • 2024
  • Items of road tunnel PISD (Precise Inspection for Safety and Diagnosis) were reviewed and analyzed using newly enhanced MMS (Mobile Mapping System) technology. Possible items with MMS can be visual inspection, survey and non-destructive test, structural analysis, and maintenance plan. The resolution of 3D point cloud decreased when the vehicle speed of MMS is too fast while the calibration error increased when it is too slow. The speed measurement of 50 km/h is determined to be effective in this study. Although image resolution by MMS has a limit to evaluating the width of crack with high precision, it can be used as data to identify the status of facilities in the tunnel and determine whether they meet disaster prevention management code of tunnel. 3D point cloud with MMS can be applicable for matching of cross-section and also possible for the variation of longitudinal survey, which can intuitively check vehicle clearance throughout the road tunnel. Compared with the measurement of current PISD, number of test and location of survey is randomly sampled, the continuous measurement with MMS for environment condition can be effective and meaningful for precise estimation in various analysis.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.

The effects of emotional matching between video color-temperature and scent on reality improvement (영상의 색온도와 향의 감성적 일치가 영상실감 향상에 미치는 효과)

  • Lee, Guk-Hee;Li, Hyung-Chul O.;Ahn, ChungHyun;Ki, MyungSeok;Kim, ShinWoo
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.29-41
    • /
    • 2015
  • Technologies for video reality (e.g., 3D displays, vibration, surround sound, etc.) utilize various sensory input and many of them are now commercialized. However, when it comes to the use of olfaction for video reality, there has not been much progress in both practical and academic respects. Because olfactory sense is tightly associated with human emotion, proper use of this sense is expected to help to achieve a high degree of video reality. This research tested the effects of a video's color-temperature related scent on reality improvement when the video does not have apparent object (e.g., coffee, flower, etc.) which suggest specific smell. To this end, we had participants to rate 48 scents based on a color-temperature scale of 1,500K (warm)-15,000K (cold) and chose 8 scents (4 warm scents, 4 cold scents) which showed clear correspondence with warm or cold color-temperatures (Expt. 1). And then after applying warm (3,000K), neutral (6,500K), or cold (14,000K) color-temperatures to images or videos, we presented warm or cold scents to participants while they rate reality improvement on a 7-point scale depending on relatedness of scent vs. color-temperature (related, unrelated, neutral) (Expts. 2-3). The results showed that participants experienced greater reality when scent and color-temperature was related than when they were unrelated or neutral. This research has important practical implications in demonstrating the possibility that provision of color-temperature related scent improves video reality even when there are no concrete objects that suggest specific olfactory information.

Evaluation of Setup Usefulness of CBCT using Rando Phantom (인체 팬텀(Rando Phantom)을 이용한 CBCT의 Setup 유용성 평가)

  • Jang, Eun-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.7
    • /
    • pp.234-238
    • /
    • 2011
  • This paper will evaluate the usefulness of 3D target of CBCT by comparing human body's posture and position when simulated treatment is being carried out as well as human phantom posture and position using CBCT which is applying OBI. From the Rando Phantom which is located in the datum point moved in parallel and rotationary direction using CBCT. Then the mean and standard deviation difference on images location difference that are acquired were compared with real the Rando Phantom' moved distance. To make a plan of simulated treatment with the same procedure of real radiation therapy, we are going to setup the Rando Phantom. With an assumption that the position is set in accurate place, we measured the setup errors accroding to the change of the translation and rotation. Tests are repeated 10 times to get the standard deviation of the error values. The variability in couch shift after positioning equivalent to average residual error showed lateral $0.2{\pm}0.2$mm, longitudinal $0.4{\pm}0.3$mm, vertical $-0.4{\pm}0.1$mm. The average rotation erroes target localization after simulated $0.4{\pm}0.2$ mm, $0.3{\pm}0.3$ mm, and $0.3{\pm}0.4$ mm. The detection error by rotation is $0{\sim}0.6^{\circ}$ CBCT 3D/3D matching using the Rando Phantom minimized the errors by realizing accurate matching during simulated treatment and patient caring.