• Title/Summary/Keyword: point matching

Search Result 840, Processing Time 0.027 seconds

The Geometric Modeling for 3D Information of X-ray Inspection (스테레오 X-선 검색장치를 이용한 3차원 정보 가시화에 관한 연구)

  • Hwang, Young-Gwan;Lee, Seung-Min;Park, Jong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.145-149
    • /
    • 2014
  • In this study, using X-ray cargo container scanning device and to differentiate the concept of three-dimensional information extraction applied for X-ray scanning device as an ingredient in the rotation of the X-Ray Linear Pushbroom Stereo System by introducing the geometric How to model was introduced. Three-dimensional information obtained through the matching of a single voxel space filled with a random vector operations for each voxel in the three dimensional shape reconstruction algorithm using the definition, and in time, the time required for each step were analyzed. Using OpenCV in each step by applying parallelization techniques approximately 1.8 times improvement in the processing time of the check, but do not meet the target within one minute levels. The other hand, X-ray images by the primary process to convert the point View the results of real-time stereo through a three-dimensional could feel the comfort level.

An Omnidirectional Planar Antenna with Four Stepped L-shape slots (4개의 계단형 L-슬롯 구조를 갖는 전방향성 평면 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.3-8
    • /
    • 2008
  • In this paper, an planar antenna which has omnidirectional radiation pattern in H-plane and low profile is proposed. By adding inductance elements of an ENG shell structure, a capacitance element of an electrically small antenna is easily achieved with impedance matching. An ENG shell structure is consist of a inductive loading structure which has symmetrical four stepped L-shape slots. The simulated result shows, the impedance bandwidth of the proposed antenna is 150MHz (2.5 ~ 2.65GHz). The simulated maximum radiation gain of proposed antenna is 1.12 dBi at center frequency 2.56GHz. Omnidirectional radiation pattern is achieved. The proposed antenna will be applied to wireless lan access point system.

  • PDF

A Study on the Technology Development and Application Plan for making an Integrated Digital Map of an Electronical Navigational Chart and a Digital Terrain Map (육.해도 통합수치도 제작 기술 개발과 응용 방안+)

  • 이기철;정희균;박창호;서상현;김정희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.347-356
    • /
    • 1999
  • This study is to develop the technology and the ways of the practical use of the integrated digital map of and Electronical Navigational Chart(ENC) and Digital Terrain Map(DTM) for the effective and scientific based conservation, development and management. In this study, as preliminary studies to make eventual integrated maps, the concept of coastal areas are defined and the characteristics of digital maps developed by Korean Geography Institute and National Marine Investigation Institute are carefully analyzed. A test coastal map was developed based on the integrated digital map, a high resolution satellite image and Global Positioning System. Results from the edge matching analysis of coastal lines shows 8 meters difference in maximum. The problems, causes and solutions for the edge matched differences are described. Furthermore, the practical value of utilization, future use and various field of application are described based on the integrated digital map data base of coast area.

  • PDF

Analysis of the Electromagnetic Scattering by Conducting Strip Gratings with 2 Dielectric Layers (접지평면위에 2개의 유전체층을 가지는 도체띠 격자구조에서의 전자파산란 해석)

  • 김용연;방성일
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.1
    • /
    • pp.102-109
    • /
    • 1999
  • In this paper, Electromagnetic scattering problem by a perfectly conducting strip grating with 2 dielectric layer on a grounded plane by incidence of a electric wave is analyzed by applying the PMM (Point Matching Method) known as a simple procedure. The scattered electromagnetic fields are expanded in a series of Floquet mode functions. The boundary conditions are applied to obtain the unknown field coefficients and the conducting boundary condition is used for the relationship between the tangential electric field and the electric current density on the strip When the incident angle is normal incidence the minimum value of the geometrically normalized reflected power according as relative permittivity is increased it should be noted that the value of the strip width gets moved toward high value. Them most energy by a normal incident wave is scattered in direction of the other angles except normal incident angle.

  • PDF

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.

Localization Algorithm for Lunar Rover using IMU Sensor and Vision System (IMU 센서와 비전 시스템을 활용한 달 탐사 로버의 위치추정 알고리즘)

  • Kang, Hosun;An, Jongwoo;Lim, Hyunsoo;Hwang, Seulwoo;Cheon, Yuyeong;Kim, Eunhan;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • In this paper, we propose an algorithm that estimates the location of lunar rover using IMU and vision system instead of the dead-reckoning method using IMU and encoder, which is difficult to estimate the exact distance due to the accumulated error and slip. First, in the lunar environment, magnetic fields are not uniform, unlike the Earth, so only acceleration and gyro sensor data were used for the localization. These data were applied to extended kalman filter to estimate Roll, Pitch, Yaw Euler angles of the exploration rover. Also, the lunar module has special color which can not be seen in the lunar environment. Therefore, the lunar module were correctly recognized by applying the HSV color filter to the stereo image taken by lunar rover. Then, the distance between the exploration rover and the lunar module was estimated through SIFT feature point matching algorithm and geometry. Finally, the estimated Euler angles and distances were used to estimate the current position of the rover from the lunar module. The performance of the proposed algorithm was been compared to the conventional algorithm to show the superiority of the proposed algorithm.

Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network (SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템)

  • Kim, Dong Yeop;Lee, Jae Min;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

Shape Description and Retrieval Using Included-Angular Ternary Pattern

  • Xu, Guoqing;Xiao, Ke;Li, Chen
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.737-747
    • /
    • 2019
  • Shape description is an important and fundamental issue in content-based image retrieval (CBIR), and a number of shape description methods have been reported in the literature. For shape description, both global information and local contour variations play important roles. In this paper a new included-angular ternary pattern (IATP) based shape descriptor is proposed for shape image retrieval. For each point on the shape contour, IATP is derived from its neighbor points, and IATP has good properties for shape description. IATP is intrinsically invariant to rotation, translation and scaling. To enhance the description capability, multiscale IATP histogram is presented to describe both local and global information of shape. Then multiscale IATP histogram is combined with included-angular histogram for efficient shape retrieval. In the matching stage, cosine distance is used to measure shape features' similarity. Image retrieval experiments are conducted on the standard MPEG-7 shape database and Swedish leaf database. And the shape image retrieval performance of the proposed method is compared with other shape descriptors using the standard evaluation method. The experimental results of shape retrieval indicate that the proposed method reaches higher precision at the same recall value compared with other description method.

VR Image Watermarking Method Considering Production Environments (제작 환경을 고려한 VR 영상의 워터마킹 방법)

  • Moon, Won-jun;Seo, Young-ho;Kim, Dong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.561-563
    • /
    • 2019
  • This paper proposes a watermarking method for copyright protection of images used in VR. The Embedding method is that finds the point through the SIFT feature points, inserts the watermark by using DWT and QIM on the surrounding area. The objective image to extract the embedded watermark is the projected image and its method finds the SIFT feature points and extracts watermark data from its surrounding areas after correction by using inverse process of matching and projection in the VR image production process. By comparing the NCC and BER between the extracted watermark and the inserted watermark, the watermark is determined by accumulating the watermark having a threshold value or more. This is confirmed by comparing with a conventional method.

  • PDF