• Title/Summary/Keyword: point matching

Search Result 840, Processing Time 0.025 seconds

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

Entropy-Based 6 Degrees of Freedom Extraction for the W-band Synthetic Aperture Radar Image Reconstruction (W-band Synthetic Aperture Radar 영상 복원을 위한 엔트로피 기반의 6 Degrees of Freedom 추출)

  • Hyokbeen Lee;Duk-jin Kim;Junwoo Kim;Juyoung Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1245-1254
    • /
    • 2023
  • Significant research has been conducted on the W-band synthetic aperture radar (SAR) system that utilizes the 77 GHz frequency modulation continuous wave (FMCW) radar. To reconstruct the high-resolution W-band SAR image, it is necessary to transform the point cloud acquired from the stereo cameras or the LiDAR in the direction of 6 degrees of freedom (DOF) and apply them to the SAR signal processing. However, there are difficulties in matching images due to the different geometric structures of images acquired from different sensors. In this study, we present the method to extract an optimized depth map by obtaining 6 DOF of the point cloud using a gradient descent method based on the entropy of the SAR image. An experiment was conducted to reconstruct a tree, which is a major road environment object, using the constructed W-band SAR system. The SAR image, reconstructed using the entropy-based gradient descent method, showed a decrease of 53.2828 in mean square error and an increase of 0.5529 in the structural similarity index, compared to SAR images reconstructed from radar coordinates.

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.

Spherical Panorama Image Generation Method using Homography and Tracking Algorithm (호모그래피와 추적 알고리즘을 이용한 구면 파노라마 영상 생성 방법)

  • Munkhjargal, Anar;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.42-52
    • /
    • 2017
  • Panorama image is a single image obtained by combining images taken at several viewpoints through matching of corresponding points. Existing panoramic image generation methods that find the corresponding points are extracting local invariant feature points in each image to create descriptors and using descriptor matching algorithm. In the case of video sequence, frames may be a lot, so therefore it may costs significant amount of time to generate a panoramic image by the existing method and it may has done unnecessary calculations. In this paper, we propose a method to quickly create a single panoramic image from a video sequence. By assuming that there is no significant changes between frames of the video such as in locally, we use the FAST algorithm that has good repeatability and high-speed calculation to extract feature points and the Lucas-Kanade algorithm as each feature point to track for find the corresponding points in surrounding neighborhood instead of existing descriptor matching algorithms. When homographies are calculated for all images, homography is changed around the center image of video sequence to warp images and obtain a planar panoramic image. Finally, the spherical panoramic image is obtained by performing inverse transformation of the spherical coordinate system. The proposed method was confirmed through the experiments generating panorama image efficiently and more faster than the existing methods.

High Efficiency GaN HEMT Power Amplifier Using Harmonic Matching Technique (고조파 정합 기법을 이용한 고효율 GaN HEMT 전력 증폭기)

  • Jin, Tae-Hoon;Kwon, Tae-Yeop;Jeong, Jinho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we present the design, fabrication and measurement of high efficiency GaN HEMT power amplifier using harmonic matching technique. In order to achieve high efficiency, harmonic load-pull simulation is performed, that is, the optimum load impedances are determined at $2^{nd}$ and $3^{rd}$ harmonic frequencies as well as at the fundamental. Then, the output matching circuit is designed based on harmonic load-pull simulation. The measurement of the fabricated power amplifier shows the linear gain of 20 dB and $P_{1dB}$(1 dB gain compression point) of 33.7 dBm at 1.85 GHz. The maximum power added efficiency(PAE) of 80.9 % is achieved at the output power of 38.6 dBm, which belongs to best efficiency performance among the reported high efficiency power amplifiers. For W-CDMA input signal, the power amplifier shows a PAE of 27.8 % at the average output power of 28.4 dBm, where an ACLR (Adjacent Channel Leakage Ratio) is measured to be -38.8 dBc. Digital predistortion using polynomial fitting was implemented to linearize the power amplifiers, which allowed about 6.2 dB improvement of an ACLR performance.

Localization of Unmanned Ground Vehicle based on Matching of Ortho-edge Images of 3D Range Data and DSM (3차원 거리정보와 DSM의 정사윤곽선 영상 정합을 이용한 무인이동로봇의 위치인식)

  • Park, Soon-Yong;Choi, Sung-In
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-54
    • /
    • 2012
  • This paper presents a new localization technique of an UGV(Unmanned Ground Vehicle) by matching ortho-edge images generated from a DSM (Digital Surface Map) which represents the 3D geometric information of an outdoor navigation environment and 3D range data which is obtained from a LIDAR (Light Detection and Ranging) sensor mounted at the UGV. Recent UGV localization techniques mostly try to combine positioning sensors such as GPS (Global Positioning System), IMU (Inertial Measurement Unit), and LIDAR. Especially, ICP (Iterative Closest Point)-based geometric registration techniques have been developed for UGV localization. However, the ICP-based geometric registration techniques are subject to fail to register 3D range data between LIDAR and DSM because the sensing directions of the two data are too different. In this paper, we introduce and match ortho-edge images between two different sensor data, 3D LIDAR and DSM, for the localization of the UGV. Details of new techniques to generating and matching ortho-edge images between LIDAR and DSM are presented which are followed by experimental results from four different navigation paths. The performance of the proposed technique is compared to a conventional ICP-based technique.

A Study on 3-Dimensional Near-Field Source Localization Using Interference Pattern Matching in Shallow Water Environments (천해에서 간섭패턴 정합을 이용한 근거리 음원의 3차원 위치추정 기법연구)

  • Kim, Se-Young;Chun, Seung-Yong;Son, Yoon-Jun;Kim, Ki-Man
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.318-327
    • /
    • 2009
  • In this paper, we propose a 3-D geometric localization method for near-field broadband source in shallow water environments. According to the waveguide invariant theory, slope of the interference pattern which is seen in a sensor spectrogram directly proportional to a range of the source. The relative ratio of the range between source and sensors was estimated by matching of two interference patterns in spectrogram. Then this ratio is applied to the Apollonius's circle which shows the locus of a source whose range ratio from two sensors is constant. Two Apollonius's circles from three sensors make the intersection point that means the horizontal range and the azimuth angle of the source. And this intersection point is constant with source depth. Therefore the source depth can be estimated using 3-D hyperboloid equation whose range difference from two sensors is constant. To evaluate a performance of the proposed localization algorithm, simulation is performed using acoustic propagation program and analysis of localization error is demonstrated. From simulation results, error estimate for range and depth is described within 50 m and 15 m respectively.

A Study on Matching Method of Hull Blocks Based on Point Clouds for Error Prediction (선박 블록 정합을 위한 포인트 클라우드 기반의 오차예측 방법에 대한 연구)

  • Li, Runqi;Lee, Kyung-Ho;Lee, Jung-Min;Nam, Byeong-Wook;Kim, Dae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-130
    • /
    • 2016
  • With the development of fast construction mode in shipbuilding market, the demand on accuracy management of hull is becoming higher and higher in shipbuilding industry. In order to enhance production efficiency and reduce manufacturing cycle time in shipbuilding industry, it is important for shipyards to have the accuracy of ship components evaluated efficiently during the whole manufacturing cycle time. In accurate shipbuilding process, block accuracy is the key part, which has significant meaning in shortening the period of shipbuilding process, decreasing cost and improving the quality of ship. The key of block accuracy control is to create a integrate block accuracy controlling system, which makes great sense in implementing comprehensive accuracy controlling, increasing block accuracy, standardization of proceeding of accuracy controlling, realizing "zero-defect transferring" and advancing non-allowance shipbuilding. Generally, managers of accuracy control measure the vital points at section surface of block by using the heavy total station, which is inconvenient and time-consuming for measurement of vital points. In this paper, a new measurement method based on point clouds technique has been proposed. This method is to measure the 3D coordinates values of vital points at section surface of block by using 3D scanner, and then compare the measured point with design point based on ICP algorithm which has an allowable error check process that makes sure that whether or not the error between design point and measured point is within the margin of error.

LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery (라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.319-326
    • /
    • 2014
  • The accurate geo-referencing processes that apply ground control points is prerequisite for effective end use of HRSI (High-resolution satellite imagery). Since the conventional control point acquisition by human operator takes long time, demands for the automated matching to existing reference data has been increasing its popularity. Among many options of reference data, the airborne LiDAR (Light Detection And Ranging) data shows high potential due to its high spatial resolution and vertical accuracy. Additionally, it is in the form of 3-dimensional point cloud free from the relief displacement. Recently, a new matching method between LiDAR data and HRSI was proposed that is based on the image projection of whole LiDAR data into HRSI domain, however, importing and processing the large amount of LiDAR data considered as time-consuming. Therefore, we wmotivated to ere propose a local LiDAR chip generation for the HRSI geo-referencing. In the procedure, a LiDAR point cloud was rasterized into an ortho image with the digital elevation model. After then, we selected local areas, which of containing meaningful amount of edge information to create LiDAR chips of small data size. We tested the LiDAR chips for fully-automated geo-referencing with Kompsat-2 and Kompsat-3 data. Finally, the experimental results showed one-pixel level of mean accuracy.

Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning (스캔 매칭 기반 실내 2차원 PCD de-skewing 알고리즘)

  • Kang, Nam-woo;Sa, Se-Won;Ryu, Min Woo;Oh, Sangmin;Lee, Chanwoo;Cho, Hunhee;Park, Insung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2021
  • MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.