In this paper, a human activity regeneration (HAR) system based on multiple input multiple output frequency modulation continuous wave (MIMO FMCW) radar was designed and implemented. Using point cloud data from MIMO radar sensors has advantages in terms of privacy, safety, and accuracy. For the implementation of the HAR system, a customized neural network based on PointPillars and depthwise separate convolutional neural network (DS-CNN) was developed. By processing high-resolution point cloud data through a lightweight network, high accuracy and efficiency were achieved. As a result, the accuracy of 98.27% and the computational complexity of 11.27M multiply-accumulates (Macs) were achieved. In addition, the developed neural network model was implemented on Raspberry-Pi embedded system and it was confirmed that point cloud data can be processed at a speed of up to 8 fps.
Automatic object recognition in 3D measuring data is of great interest in many application fields e.g. computer vision, reverse engineering and digital factory. In this paper we present a software tool for a fully automatic object detection and parameter estimation in unordered and noisy point clouds with a large number of data points. The software consists of three interactive modules each for model selection, point segmentation and model fitting, in which the orthogonal distance fitting (ODF) plays an important role. The ODF algorithms estimate model parameters by minimizing the square sum of the shortest distances between model feature and measurement points. The local quadric surface fitted through ODF to a randomly touched small initial patch of the point cloud provides the necessary initial information for the overall procedures of model selection, point segmentation and model fitting. The performance of the presented software tool will be demonstrated by applying to point clouds.
This study aimed to use three-dimensional point cloud data (PCD) obtained from Terrestrial Laser Scanning (TLS) and Mobile Laser Scanning (MLS) to evaluate a deep learning-based species classification model for two tree species: Pinus koraiensis and Larix kaempferi. Sixteen models were constructed based on the three conditions: LiDAR platform (TLS and MLS), down-sampling intensity (1024, 2048, 4096, 8192), and deep learning model (PointNet, PointNet++). According to the classification accuracy evaluation, the highest kappa coefficients were 93.7% for TLS and 96.9% for MLS when applied to PCD data from the PointNet++ model, with down-sampling intensities of 8192 and 2048, respectively. Furthermore, PointNet++ was consistently more accurate than PointNet in all scenarios sharing the same platform and down-sampling intensity. Misclassification occurred among individuals of different species with structurally similar characteristics, among individual trees that exhibited eccentric growth due to their location on slopes or around trails, and among some individual trees in which the crown was vertically divided during tree segmentation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.1
/
pp.1-10
/
2012
Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.
Utilization and demand of UAV (unmanned aerial vehicle) for the generation of 3D city model are increasing. In this study, we performed an experiment to adjustment position/orientation of UAV with incomplete attitude information and to extract point cloud data. In order to correct the attitude of the UAV, the rotation angle was calculated by using the continuous position information of UAV movements. Based on this, the corrected position/orientation information was obtained by applying IBA (Incremental Bundle Adjustment) based on photogrammetry. Each pair was transformed into an epipolar image, and the MDR (Multi-Dimensional Relaxation) technique was applied to obtain high precision DSM. Each extracted pair is aggregated and output in the form of a single point cloud or DSM. Using the DJI inspire1 and Phantom4 images, we can confirm that the point cloud can be extracted which expresses the railing of the building clearly. In the future, research will be conducted on improving the matching performance and establishing sensor models of oblique images. After that, we will continue the image processing technology for the generation of the 3D city model through the study of the extraction of 3D cloud It should be developed.
In this paper, we propose a method to separate the ground and building areas and generate building models automatically through planarity analysis using UAV (Unmanned Aerial Vehicle) based point cloud. In this study, proposed method includes five steps. In the first step, the planes of the point cloud were extracted by analyzing the planarity of the input point cloud. In the second step, the extracted planes were analyzed to find a plane corresponding to the ground surface. Then, the points corresponding to the plane were removed from the point cloud. In the third step, we generate ortho-projected image from the point cloud ground surface removed. In the fourth step, the outline of each object was extracted from the ortho-projected image. Then, the non-building area was removed using the area, area / length ratio. Finally, the building's outer points were constructed using the building's ground height and the building's height. Then, 3D building models were created. In order to verify the proposed method, we used point clouds made using the UAV images. Through experiments, we confirmed that the 3D models of the building were generated automatically.
Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Kwon, Soon-Chul;Seo, Young-Ho
Journal of Broadcast Engineering
/
v.25
no.3
/
pp.439-448
/
2020
In this paper, we propose a modified optimization algorithm for point cloud matching of multi-view RGB-D cameras. In general, in the computer vision field, it is very important to accurately estimate the position of the camera. The 3D model generation methods proposed in the previous research require a large number of cameras or expensive 3D cameras. Also, the methods of obtaining the external parameters of the camera through the 2D image have a large error. In this paper, we propose a matching technique for generating a 3D point cloud and mesh model that can provide omnidirectional free viewpoint using 8 low-cost RGB-D cameras. We propose a method that uses a depth map-based function optimization method with RGB images and obtains coordinate transformation parameters that can generate a high-quality 3D model without obtaining initial parameters.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.16
no.1
/
pp.31-49
/
2012
In this paper, we propose a very efficient method which reconstructs the high resolution surface from a set of unorganized points. Our method is based on the level set method using adaptive octree. We start with the surface reconstruction model proposed in [20]. In [20], they introduced a very fast and efficient method which is different from the previous methods using the level set method. Most existing methods[21, 22] employed the time evolving process from an initial surface to point cloud. But in [20], they considered the surface reconstruction process as an elliptic problem in the narrow band including point cloud. So they could obtain very speedy method because they didn't have to limit the time evolution step by the finite speed of propagation. However, they implemented that model just on the uniform grid. So they still have the weakness that it needs so much memories because of being fulfilled only on the uniform grid. Their algorithm basically solves a large linear system of which size is the same as the number of the grid in a narrow band. Besides, it is not easy to make the width of band narrow enough since the decision of band width depends on the distribution of point data. After all, as far as it is implemented on the uniform grid, it is almost impossible to generate the surface on the high resolution because the memory requirement increases geometrically. We resolve it by adapting octree data structure[12, 11] to our problem and by introducing a new redistancing algorithm which is different from the existing one[19].
Park, Hong-Seok;Tuladhar, Upendra Mani;Shin, Seung-Cheol
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.22
no.3
/
pp.452-458
/
2013
Over the past several years, many studies have been carried out in the field of 3D data inspection systems. Several attempts have been made to improve the quality of manufactured parts. The introduction of laser sensors for inspection has made it possible to acquire data at a remarkably high speed. In this paper, a robust inspection technique for detecting defects in 3D pressed parts using laser-scanned data is proposed. Point cloud data are segmented for the extraction of features. These segmented features are used for shape matching during the localization process. An iterative closest point (ICP) algorithm is used for the localization of the scanned model and CAD model. To achieve a higher accuracy rate, the ICP algorithm is modified and then used for matching. To enhance the speed of the matching process, aKd-tree algorithm is used. Then, the deviation of the scanned points from the CAD model is computed.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.40
no.1
/
pp.1-14
/
2022
In order to conduct rapid, accurate and safe surveying at the excavation site, In this study, the possibility of underground facility survey using drones and the expected effect of 3D visualization were obtained as follows. Phantom4Pro 20MP drones have a 30m flight altitude and a redundant 85% flight plan, securing a GSD (Ground Sampling Distance) value of 0.85mm and 4points of GCP (Groud Control Point)and 2points of check point were calculated, and 7.3mm of ground control point and 11mm of check point were obtained. The importance of GCP was confirmed when measured with low-cost drones. If there is no ground reference point, the error range of X value is derived from -81.2 cm to +90.0 cm, and the error range of Y value is +6.8 cm to 155.9 cm. This study classifies point cloud data using the Pix4D program. I'm sorting underground facility data and road pavement data, and visualized 3D data of road and underground facilities of actual model through overlapping process. Overlaid point cloud data can be used to check the location and depth of the place you want through the Open Source program CloudCompare. This study will become a new paradigm of underground facility surveying.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.