• Title/Summary/Keyword: pohang earthquake

Search Result 166, Processing Time 0.033 seconds

Seismic Retrofitting Effects of General Hospital Using Self-Centering Energy Dissipative Bracing System (자기복구형 에너지소산 가새시스템을 적용한 종합병원의 내진보강효과)

  • Kim, Taewan;Chu, Yurim;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.159-167
    • /
    • 2019
  • 2016 Gyeongju and 2017 Pohang earthquakes led Koreans to acknowledge that the Korean peninsula is not an earthquake-free zone anymore. Among various buildings crucial to after-shock recovery, general hospital buildings, especially existing old ones, are very significant so seismic retrofitting of those must be an important issue. Self-centering energy dissipative(SCED) brace is one of retrofitting methods, which consists of tendon with restoring force and friction device capable of dissipating seismic energy. The strength of the SCED brace is that the tendon forces a structure to go back to the original position, which means residual drift can be negligible. The residual drift is a very important parameter to determine usableness of general hospitals after shock. To the contrary, buckling-restrained braces(BRB) are also a very effective way to retrofit because they can resist both compressive and tensile, but residual drift may exist when the steel core yields. On this background, the seismic retrofitting effect of general hospitals reinforced with SCED braces was investigated and compared to that of the BRD in this study. As a result, although the floor acceleration cannot be reduced, the story drift and residual drift, and the shear demand of walls significantly decreased. Consequently, seismic retrofitting by SCED braces are very effective for domestic low-rise general hospitals.

Study on the Seismic Performance for Low-rised RC Building with Vertical and Torsional Irregularities (수직비정형과 비틀림비정형을 동시에 가지는 저층 RC 건물의 내진성능에 관한 연구)

  • Choi, In-Hyuk;Baek, Eun-Rim;Lee, Sang-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.137-148
    • /
    • 2019
  • Korean piloti-type buildings are comprised of pilotis in the first story and shear walls in the upper stories. This vertical irregularity causes excessive lateral plastic deformation on the first story while the upper stories stay elastic. Meanwhile, asymmetric position of structural components such as core walls and columns of RC piloti-type buildings tends to produce torsional irregularities of the structures. Korean Building Code(KBC2016) requires the special seismic load and torsional amplification factor to apply to the piloti-type buildings lower than six-story or 20m if it has vertical and torsional irregularities when the building corresponds to seismic design category C or D. Many Korean low-rised RC buildings fall into the class. Therefore, the special earthquake load and torsional amplification factor are often applied to a building simultaneously. However, it has not been studied enough how much influence each parameter has on buildings with vertical and torsional irregularities at the same time. The purpose of this study is to evaluate the effect of factor special seismic load and torsional amplification on seismic performance of irregular buildings. In this study, a damaged 4th story piloti-type building by the Pohang earthquake was selected and the earthquake response analysis was carried out with various seismic design methods by the KBC 2016. The effect of the design parameters on seismic performance was analyzed by the dynamic analysis of models with special seismic load and torsional amplification factor based on the selected building. It was concluded that the application of the torsional amplification factor to the reference model to which special seismic design was applied, does not significantly affect the seismic performance.

Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test (진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석)

  • Kim, Youngjun;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.25-32
    • /
    • 2022
  • As recently, there have been two earthquakes with a magnitude of 5.0 or greater in Korea and the number of smaller earthquakes has increased, a lot of research and interest in earthquake-resistant design are increasing. Especially, the Pohang earthquake has also raised interest in earthquake-resistant design of port facilities. In this study, experiments and analysis were conducted on the dynamic behavior of upright and inclined breakwaters during earthquakes among port structures through the 1g shaking table test. To this end, three seismic waves were applied to the model to which the similarity law (scale effect) was applied: long period (Hachinohe), short period (Ofunato) and artificial seismic waves. The acceleration and displacement of the upright and inclined breakwaters were analyzed according to whether the DCM method was reinforced during earthquakes based on the results of shaking table test. As the result, the dynamic behavior of the upright and inclined breakwater shows a tendency to suppress the amplification of acceleration as bearing capacity and rigidity increase when DCM method is reinforced.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.

Dynamic Behavior of Pier-Type Quay Walls Due to Ground Improvement During Earthquakes (지진 시 지반개량에 따른 잔교식 안벽의 동적 거동)

  • Hyeonsu Yun;Seong-Kyu Yun;Gichun Kang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.29-42
    • /
    • 2024
  • The 2017 Pohang earthquake caused damage to quay structures due to liquefaction. Liquefaction occurs when effective stress is lost due to an increase in excess pore water pressure during an earthquake. As a result, the damage caused to the pier-type quay wall was identified and the damage caused by liquefaction was analyzed. In addition, in the case of improved ground, damage occurred due to liquefaction of the lower sand layer due to the difference in stiffness from the soft rock layer, so additional numerical analysis was performed assuming non-liquefaction ground. There are several factors that affect the increase in excess pore water pressure ratio, such as the relative density of the ground and the magnitude of the input seismic acceleration. Therefore, this study performed numerical analysis for Cases 1 to 3 by increasing the magnitude of the input acceleration, and in the case of improved ground, damage occurred due to liquefaction of the lower sand layer, so the analysis was performed assuming non-liquefaction ground. As a result, the improved ground requires additional reinforcement when there is liquefied ground below, and the horizontal displacement of the pier-type quay piles was reduced by about two times.

Development of Ground Motion Models within Rock Based on Ground Motion Data Measured at Borehole Seismic Stations (시추공 관측소 계측 자료에 기반한 암반의 지반운동 모델 개발)

  • Sinhang Kang
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.301-311
    • /
    • 2024
  • In South Korea, following the 2016 Gyeongju and 2017 Pohang earthquakes, the need for earthquake disaster prevention has been increasing. Reliable techniques for probabilistic seismic hazard analysis and ground motion models are required for quantifying earthquake damage. Recently, there has been growing demand for deep underground facilities, necessitating accurate quantification techniques for earthquake damage in deep underground. In this study, ground motion models within rock were proposed using ground motion data measured at borehole seismic stations. A regression analysis, a type of empirical technique, was applied to 17 periods selected in a range from 0.01 to 10 s of spectral accelerations to develop the ground motion models. Residual analysis was performed to evaluate and improve the prediction performance of the ground motion model, with correction factors added to the model equation. When applying the proposed model, the group means of residuals approached zero, and the standard deviation of total residuals, similar to existing models proposed in other countries, confirmed the reliability of the proposed model.

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses (지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교)

  • Kang, Byeong-Ju;Hwang, Bum-Sik;Bang, Tea-Wan;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.

A Study on the Seismic Performance Design of Waterproofing Materials Applied to Single-side Walls of Underground Structures (지하 구조물 합벽구간에 적용되는 방수재료의 내진성능설계를 위한 기초 자료조사 연구)

  • Kim, Soo Yeon;Na, Mi Ok;Lee, Sung Jin;Kim, Meong Ji;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.220-221
    • /
    • 2019
  • At a time when the recent earthquake in Pohang, Korea requires the need for seismic performance design not only for concrete structures but also for construction materials used in construction structures, the possibility of applying the seismic performance design of waterproof materials constructed in the form of direct or partial adhesion to concrete structures in the underground Single-side walls section was confirmed.

  • PDF

Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula (한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석)

  • Sohn, Yujin;Choi, Sungchan;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.597-608
    • /
    • 2020
  • Even after the Gyeongju earthquake and the Pohang earthquake, hundreds of aftershocks and micro-earthquakes are still occurring in the southeastern part of the Korean Peninsula. These phenomena mean that the stress is constantly working, implying that another huge earthquake may occur in the future. Therefore, the gravity field interpretation method was used to analyze the deep geological structure of the Pohang-Ulsan region in the southeastern Korean Peninsula. First, a gravity survey was performed to collect the insufficient data and to calculate the detailed Bouguer gravity anomaly in the study area. Based on the gravity anomaly data, the location, direction, and maximum depth of deep fault lines were analyzed using the inversion methods "Curvature analysis" and "Euler deconvolution method". As a result, it is interpreted that at least six fault lines(C1~C6) exist in deep depth. The deep fault line C1 is well correlated to the Yeonil Tectonic Line(YTL), suggesting that YTL is extended up to about 4000m deep. The deep fault line C2 consists of several segment faults and well correlated to the fault lines on the surface. Inferred fault lines C3, C4, and C5 have an NW-SE direction, which is parallel to the Ulsan fault. The deep fault line C6 has the direction of NE-SW, and it is interpreted that the eastern boundary fault of Eoil Basin is extended to the deep. Comparing the inferred fault lines with the distribution of micro-earthquakes, the location of the deep fault line C1 is well correlated to the hypocenter of micro-earthquakes. This implies that faults in deep depth are related to the recent earthquakes in the southeastern Korean Peninsula.

A Study on the Development of Remodeling (plan) by Deriving Temporary House Improvements (임시주거용 조립주택 개선사항 도출을 통한 리모델링(안) 개발 연구)

  • Lee, Ji-Hyang;Son, Myung-Chan;Kwon, Jin-Suk;Park, Sang-Hyun;Won, Jin-Yung
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.301-311
    • /
    • 2019
  • Purpose and Method: In this study, a questionnaire interview survey was conducted for the victims living in the temporary house by the Pohang earthquake, and improvements were derived. Results: As a result, major improvements in terms of facilities are as follows. First, in order to expand the toilet and cooking space, the existing inner gate and the wall are removed and the width of the toilet is expanded. Minimize the inconvenience by adding a cooking table as wide as the extended toilet. Second, a separate sleep compartment is set up to secure storage space in a limited area. And the storage closet is installed below and used as a storage space. At this time, the size of the sleeping space is set to double bed size. Third, curtains and blinds are installed on both windows to secure privacy, thereby protecting privacy and psychological stability. Conclusion: If the remodeling of the temporary house proposed in this study is utilized and applied, it is possible to provide a better living environment. In addition, it is expected that it will be possible to improve the efficiency of space and overcome existing spatial limitations by minimizing inconveniences reflecting the needs of the victims.