• Title/Summary/Keyword: pneumatic duct

Search Result 13, Processing Time 0.032 seconds

An Experimental Study of Pneumatic Damping at the Air Chamber for OWC type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험연구)

  • CHOI Hark-Sun;LEW Jae-Moon;HONG Seok-Won;KIM Jin-Ha
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.138-144
    • /
    • 2004
  • Pneumatic damping through a orifice type duct for OWC type wave energy device is studied experimentally. Forced oscillation tests are made to measure chamber pressure and velocity of air flaw through orifice. Pneumatic damping coefficient are deducted from the experimental research, and discussion are made far the influence of frequency, heave amplitude, and orifice size. Finally two formula are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method far practical application.

  • PDF

An Experimental Study of Pneumatic Damping at the Air Chamber for an OWC-type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험 연구)

  • CHOI HARK-SUN;HONG SEOK-WON;KlM JIN-HA;LEW JAE-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.8-14
    • /
    • 2004
  • Pneumatic damping through an orifice-type duct for an OWC-type wave energy device is studied experimentally. Forced oscillation tests are used to measure chamber pressure and velocity of air-flow through an orifice. Pneumatic damping coefficients are deducted from the experimental research, and the influence of frequency, heave amplitude, and orifice size are discussed. Finally, two formulas are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method for practical application.

A Study of Pneumatic Reaction Force of Air Chamber for an OWC Type Wave Energy Device by Forced Heave Experiments (강제동요시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • Hong, Seok-Won;Choi, Hark-Sun;Lew, Jae-Moon;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.11-17
    • /
    • 2005
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct are studied experimentally. Experimental owe model is idealized as a simple circular cylinder with an orifice type air duct located at the middle oj the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

A Study of Pneumatic Reaction Force of Air Chamber for an OWC type Wave Energy Device by Forced Heave Experiments (강제동용시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • CHOI Hark-Sun;LEW Jae-Moon;HONG Seok-Won;KIM Jin-Ha
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.212-219
    • /
    • 2004
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct arc studied experimentally. Experimental OWC model is idealized as a simple circular cylinder with an orifice type air duct located at the middle of the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

  • PDF

A Study on Motion and Wave Drift Force of a BBDB Type OWC Wave Energy Device (BBDB형 진동수주 파력발전장치의 운동 및 파랑표류력 연구)

  • Kim Jin-Ha;Lew Jae-Moon;Hong Do-Chun;Hong Seok-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.22-28
    • /
    • 2006
  • The motion and wave drift forces of floating BBDB (backward-bent duct buoy) wave energy absorbers in regular waves are calculated, taking account of the oscillating surface-pressure due to the pressure drop in the air chamber above the oscillating water column, within the scope of the linear wave theory. A series of model tests has been conducted in order to order to verify the motion and time mean wave drift force reponses in regular waves at the ocean engineering basin, MOERI/KORDI. The pneumatic damping through an orifice-type duct for the BBDB wave energy device are deducted from experimental research. Numerical simulation for motion and drift force responses of the BBDB wave energy device, considering pneumatic damping coefficients, has been carried out, and the results are compared with those of model tests.

Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

  • Lee, Kyoung-Rok;Koo, Weoncheol;Kim, Moo-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.513-528
    • /
    • 2013
  • A floating Oscillating Water Column (OWC) wave energy converter, a Backward Bent Duct Buoy (BBDB), was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT) technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL) approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

Aerodynamic Study on Pneumatic Separation of Grains(I) -An Experimental Study on The Vertical Wind Tunnel- (곡물(穀物)의 공기선별(空氣選別)에 관(關)한 공기동력학적(空氣動力學的) 연구(硏究)(I) -수직풍동(垂直風胴)의 설계(設計)에 관(關)한 실험적(實驗的) 연구(硏究)-)

  • Lee, C.H.;Cho, Y.J.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.272-281
    • /
    • 1989
  • It is desirable for the vertical wind tunnel which can build uniform air flow across the vertical duct to be used for the purpose of the investigation of the aerodynamic properties of grains. This study was conducted to examine how the air velocity profile in the vertical duct is influenced by the various alternations of the elements of the wind tunnel, and to prepare design guidance of the vertical wind tunnel which can be used for investigating aerodynamic properties of grains. In addition, several tests were conducted to locate the test section which can be applicable for determining the terminal velocity of grain. The following conclusions were obtained from the study: 1. The size and the location of the outlet of the plenum chamber should be determined such that the outlet air flow is less affected by the air flow and the back pressure by the side wall of the chamber. 2. The honeycomb was not helpful for attaining uniform air flow in case that the air flow profile at the bottom of the vertical duct is serverely different from the ideal one. 3. Even though considerable pressure drop was resulted from the screens installed within the vertical duct, the screens were helpful for attaining uniform air flow in the duct. 4. It is desirable for the test section to be located at the position that not only the air flow of the duct is not disturbed by the distorted back pressure in the plenum chamber, but also less boundary layer is developed.

  • PDF

Taxonomic Revision of the Genus Hypomesus in Korea (한국산 빙어속 (Genus Hypomesus) 어류의 분류학적 재검토)

  • Youn, Chang-Ho;Kim, Ik-Soo;Lee, Wan-Ok
    • Korean Journal of Ichthyology
    • /
    • v.11 no.2
    • /
    • pp.149-154
    • /
    • 1999
  • To use of the precise scientific name of the genus Hypomesus from Korea, taxonomic revison of the genus Hypomesus was studied based on the specimens collected at 11 sites of the reservoirs and estuaries from Korea. The most population of the Hypomesus nipponensis was taken the pneumatic duct that connected between the anterior part of swim bladder and stomach. The number of pyroric caeca of the specimens was zero to five. The number of chromatophore at isthmus was fifty to one hundred. And authors were confirmed with the membrane structure across the nasal cavity. Then, we think that the scientific name of the pond-smelt at Korea is Hypomesus nipponensis by these characters. The Yangyang population that have the sixty-two to sixty-three of vertebrae, was confirmed with H. japonicus.

  • PDF

Experimental Study of Hydrodynamic Performance of Backward Bent Duct Buoy (BBDB) Floating Wave Energy Converter (부유식 진동수주형 파력발전기(BBDB)의 유체 동역학적 성능 실험 연구)

  • Kim, Sung-Jae;Kwon, Jinseong;Kim, Jun-Dong;Koo, Weoncheol;Shin, Sungwon;Kim, Kyuhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.53-58
    • /
    • 2012
  • An experimental study on the hydrodynamic performance of a backward bent duct buoy (BBDB) was performed in a 2D wave tank. The BBDB is one of the promising oscillating water column (OWC) types of floating wave energy converters. Two different corner-shaped BBDBs (sharp-corner and round-corner) were used to measure the maximum chamber surface elevations and body motions for various incident wave conditions, and their hydrodynamic characteristics were compared. In order to investigate the effect of the pneumatic pressure inside the chamber, the heave and pitch angle interacted with elevations were compared for both open chamber and partially open chamber BBDBs. From the comparison study, the deviation in the chamber surface elevations between the two shapes of BBDBs was found to be significant near the resonance period, which may be explained by viscous energy loss. It was also found that the pneumatic pressure noticeably affected the chamber surface elevation and body motions.

Numerical Analysis of Chamber Flow and Wave Energy Conversion Efficiency of a Bottom-mounted Oscillating Water Column Wave Power Device (고정식 진동수주형 파력 발전장치의 챔버 유동 및 파에너지 변환효율 해석)

  • Koo, Weon-Cheol;Kim, Moo-Hyun;Choi, Yoon-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.388-397
    • /
    • 2010
  • A two-dimensional time-domain, potential-theory-based fully nonlinear numerical wave tank (NWT) was developed by using boundary element method and the mixed Eulerian-Lagrangian (MEL) approach for free-surface node treatment. The NWT was applied to prediction of primary wave energy conversion efficiency of a bottom-mounted oscillating water column (OWC) wave power device. The nonlinear free-surface condition inside the chamber was specially devised to represent the pneumatic pressure due to airflow velocity and viscous energy loss at the chamber entrance due to wave column motion. The newly developed NWT technique was verified through comparison with given experimental results. The maximum energy extraction was estimated with various chamber-air duct volume ratios.