• Title/Summary/Keyword: pneumatic actuator

Search Result 127, Processing Time 0.025 seconds

Intelligent Switching Control of a Pneumatic Artificial Muscle Robot using Learning Vector Quantization Neural Network (학습벡터양자화 뉴럴네트워크를 이용한 공압 인공 근육 로봇의 지능 스위칭 제어)

  • Yoon, Hong-Soo;Ahn, Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2009
  • Pneumatic cylinder is one of the low cost actuation sources which have been applied in industrial and prosthetic application since it has a high power/weight ratio, a high-tension force and a long durability However, the control problems of pneumatic systems, oscillatory motion and compliance, have prevented their widespread use in advanced robotics. To overcome these shortcomings, a number of newer pneumatic actuators have been developed such as McKibben Muscle, Rubber Actuator and Pneumatic Artificial Muscle (PAM) Manipulators. In this paper, one solution for position control of a robot arm, which is driven by two pneumatic artificial muscles, is presented. However, some limitations still exist, such as a deterioration of the performance of transient response due to the changes in the external load of the robot arm. To overcome this problem, a switching algorithm of the control parameter using a learning vector quantization neural network (LVQNN) is proposed in this paper. This estimates the external load of the pneumatic artificial muscle manipulator. The effectiveness of the proposed control algorithm is demonstrated through experiments with different external working loads.

Characteristics of the Muscular Activities with Elbow Orthosis using Pneumatic Rubber Muscle (공압 고무 엑츄에이터를 장착한 주관절 보조기 착용에 따른 상지 근력 특성)

  • Hong, K.J.;Kim, K.;Kwon, T.K.;Kim, D.W.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.825-831
    • /
    • 2007
  • An elbow orthosis with a pneumatic rubber actuator has been developed to assist and enhance upper limb movements and has been examined for the effectiveness. The effectiveness of the elbow orthosis was examined by comparing muscular activities during alternate dumbbell curl exercises with and without the orthosis. The subjects participated in the experiment were younger adults in their twenties. The subjects were instructed to perform dumbbell curl motion in a sitting position with and without orthosis in turn and a dynamometer was used to measure elbow joint torque outputs in an isovelocity mode. The measurements were done with four various dumbbell loads: 0 kg, 1 kg, 3 kg, and 5 kg. The orthosis was pneumatically actuated and controlled in a passive mode. The most comfortable air pressure to the pneumatic actuator was determined to be 0.294MPa. Electromyography(EMG) was also measured during curl exercises. The muscles of interest were biceps brachii(BB), triceps brachii(TB), brachioradialis(Bo), and flexor carpi ulnaris(FCU) in the upper limbs. The experimental results showed that the muscular activities themselves significantly reduced with elbow orthosis on in performing similar activities without orthosis. As a result of this experiment, the effectiveness of the developed upper limb orthosis was confirmed and the level of assistance was quantified.

Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake

  • Ahn, Kyoung-Kwan;Cong Thanh, TU Diep;Ahn, Young-Kong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.778-791
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of pneumatic artificial muscle manipulator (PAM manipulator) due to the changes in the external inertia load with high speed. In order to realize satisfactory control performance, a variable damper-Magneto­Rheological Brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network (신경회로망을 이용한 공압구동기의 위치 추종제어에 관한 연구)

  • Gi Heung Choi
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2000
  • Pneumatic actuators are widely used in a variety of hazardous working environments. Any process that involves pneumatic actuation is also recognized as "eco-friendly". In most cases, applications of pneumatic actuators require only point-to-point control. In recent years, research efforts have been directed toward achieving precise position tracking control. In this study, a tracking position control method is proposed and experimentally evaluated for a linear positioning system. The positioning system is composed of a pneumatic actuator and a 3-port proportional valve. The proposed controller has an inner pressure control loop and an outer position control loop. A PID controller with feedback linearization is used in the pressure control loop to nullify the nonlinearity arising from the compressibility of the air. The position controller is also a PID controller augmented with the friction compensation by a neural network. Experimental results indicate that the proposed controller significantly improves the tracking performance.rformance.

  • PDF

Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model (공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어)

  • Jang, J.S.;Yoo, W.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

Accurate Positioning with a Pneumatic Driving Apparatus (공기압 구동장치를 이용한 정밀위치제어)

  • Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • The accurate position control of pneumatic driving apparatus is considered in this paper. In pneumatically actuated positioning systems, accurate positioning as an electrical servo has been known to be difficult because of the friction force and compressibility of the air. For good control performance of the pneumatic system, an actuator mounted with externally pressurized air bearings is produced to compensate for friction force. For the controller design, the governing equation of the pneumatic driving apparatus is derived. In order to reduce the nonlinear characteristics of the control valve, linearized control input is derived from the relation between the effective area of the valve and the control input. The experimental results are presented to show the results of the improved position control of the pneumatic driving apparatus.

Fabrication and Characteristics of In-Plane Type Micro Piezoelectric Micro Grippers with Pneumatic Lines for Biological Cells and Micro Parts Handling (바이오 셀 및 마이크로 부품 handling을 위한 pneumatic line을 갖는 in-plane 형 마이크로 압전 그리퍼 제조 및 특성)

  • Park J.S.;Park K.B.;Shin K.S;Moon C.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.501-502
    • /
    • 2006
  • In-plane type micro piezoelectric micro grippers with pneumatic lines for manipulation biological cells and micro parts were designed, fabricated, and characterized. Micro grippers were fabricated through the final micro-sanding process after wafer level bonding between the etched 4' Si wafer with pneumatic channels and 4' glass wafer. Displacements between two jaws of fabricated micro grippers were linearly increased with applying voltages to piezoelectric actuator. In the case of applying 80 V, the displacement between two jaws was $160{\mu}m$. Using fabricated micro grippers, manipulation tests for biological cell and micro parts with the sizes less than $100{\mu}m$ are in process.

  • PDF

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

Micro Valve with Functional Actuator (기능성 액츄에이터를 이용한 마이크로 밸브)

  • Yun, So-Nam;Ham, Young-Bog;Lee, Kyung-Woo;Kanda, Kunio
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.951-955
    • /
    • 2004
  • Piezoelectric(PZT) actuator can substitute for solenoid which is used in fluid control field because it has faster response times and no possibility of explosion. Besides, it is available in a high temperature and it has low energy consumption. In this study, pneumatic micro valve, bimorph type PZT actuator using the softner type PZT, carbon plate as a shim and its controller circuit were suggested and investigated. Performance tests and characteristics analysis, such as displacement, force, hysteresis and frequency properties, were carried out. The displacement of the actuator measured at the end point was 63 ${\mu}m$., force of the actuator was 0.052 N and maximum operating frequency was 15Hz. Also, characteristics of the micro valve with PZT actuator were evaluated in a testing system. The results show that the suggested PZT actuator is suitable for micro valve.

  • PDF

Development of the Hybrid Type Robot Using a Pneumatic Actuator For Physical Therapy Of Ankylosis (관절 경직 환자의 물리 치료를 위한 공압 구동형 하이브리드 로봇 개발)

  • 최현석;최철우;한창수;한정수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • In this paper. the pneumatic service robot with a hybrid type is developed. A pneumatic has the advantages of good compliance , high Payload-to-weight and payload-to-volume ratios. high speed and force capabilities. Using pneumatic actuators. which have low stiffness. the service robot can guarantee safety. By suggesting a new serial-parallel hybrid type for the service robot which separates into Positioning motion and orienting motion, we can achieve large workspace and high strength-to-moving-weight ratio at the same time. A sliding mode controller can be designed for tracking the desired output using the Lyapunov stability theory and structural properties of pneumatic servo systems. Through many experiments of circular trajectory. the Pneumatic service robot is evaluated and verified.