• Title/Summary/Keyword: plume dynamics

Search Result 50, Processing Time 0.026 seconds

Numerical simlation of nanosecond pulsed laser ablation in air (대기중 나노초 펄스레이저 어블레이션의 수치계산)

  • 오부국;김동식
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

Laser- Plume Effects on Radiation Energy Transfer in Materials Processing (레이저 가공시 에너지 전달과 Plume 효과)

  • Kang, Kae-Myung;Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In laser materials processing, localized heating, melting and evaporation caused by focused laser radiation forms a vapor on the material surface. The plume is generally an unstable entity, fluctuating according to its own dynamics. The beam is refracted and absorbed as it traverses the plume, thus modifying its power density on the surface of the condensed phases. This modifies material evaporation and optical properties of the plume. A laser-produced plasma plume simulation is completed using axisymmetric, high-temperature gas dynamic model including the laser radiation power absorption, refraction, and reflection. The physical properties and velocity profiles are verified using the published experimental and numerical results. The simulation results provide the effect of plasma plume fluctuations on the laser power density and quantitative beam radius changes on the material surface. It is proved that beam absorption, reflection and defocusing effects through the plume are essential to obtain appropriate mathematical simulation results. It is also found that absorption of the beam in the plume has much less direct effect on the beam power density at the material surface than defocusing does and helium gas is more efficient in reducing the beam refraction and absorption effect compared to argon gas for common laser materials processing.

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics (전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구)

  • Choi, Wook;Lee, Kyun Ho;Myong, Rho Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.766-774
    • /
    • 2017
  • When a plume flow exhausted from a lunar lander descent engine impinges on the lunar surface, regolith particles on the lunar surface will be dispersed due to a plume-surface interaction. If the dispersed particles collide with the lunar lander, some adverse effects such as a performance degradation can be caused. Thus, this study tried to predict the plume flow behaviors using the CFD methods. A nozzle inside region was analyzed by a continuum flow model based on the Navier-Stokes equations while the plume behaviors of the outside nozzle was performed by comparing and analyzing the individual results using the continuum flow model and the DSMC method. As a result, it was possible to establish an optimum procedure of the plume analysis for the lunar lander descent engine in the vacuum condition. In the future, it is expected to utilize the present results for the development of the Korean lunar lander.

Application of CE-QUAL-W2 [v3.2] to Andong Reservoir: Part II: Simulations of Chlorophyll a and Total Phosphorus Dynamics

  • Ram, Bhattarai Prasid;Kim, Yoon-Hee;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.472-484
    • /
    • 2008
  • The calibrated Andong Reservoir hydro-dynamic module (PART I) of the 2-dimensional hydrodynamic and water quality model, CE-QUAL-W2 [v3.2], was applied to examine the dynamics of total phosphorus, and chlorophyll $\alpha$ concentration within Andong Reservoir. The modeling effort was supported with the data collected in the field for a five year period. In general, the model achieved a good accuracy throughout the calibration period for both chlorophyll ${\alpha}$ and total phosphorus concentration. The greatest deviation in algal concentration occurred on $10^{th}$ October, starting at the layer just beneath the surface layer and extending up to the depth of 35 m. This deviation is principally attributed to the effect of temperature on the algal growth rate. Also, on the same date, the model over-predicts hypolimnion and epilimnion total phosphorus concentration but under-predicts the high concentrated plume in the metalimnion. The large amount of upwelling of finer suspended solid particles, and re-suspension of the sediments laden with phosphorus, are thought to have caused high concentration in the epilimnion and hypolimnion, respectively. Nevertheless, the model well reproduced the seasonal dynamics of both chlorophyll a and total phosphorus concentration. Also, the model tracked the interflow of high phosphorus concentration plume brought by the turbid discharge during the Asian summer monsoon season. Two different hypothetical discharge scenarios (discharge from epilimnetic, and hypolimnetic layers) were analyzed to understand the response of total phosphorus interflow plume on the basis of differential discharge gate location. The simulated results showed that the hypolimnetic discharge gate operation ($103{\sim}113\;m$) was the most effective reservoir structural control method in quickly discharging the total phosphorus plume (decrease of in-reservoir concentration by 219% than present level).

Plume Rise and Initial Dilution Determination Reflecting the Density Profile over Entire Water Column (해수 전체 컬럼에서 밀도 분포를 반영한 플룸 상승과 초기 희석도 결정)

    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.215-230
    • /
    • 1997
  • A number of ocean outfalls are located around coastal area over the United States and discharge primary treated effluent into deep water for efficient wastewater treatment. Two of them, the Sand Island and Honouliuli municipal wastewater outfalls, are located on the south coast of Oahu. There have been growing interests about the plume dynamics around the ocean outfalls since plume discharged from the multiport diffuser may have significant impacts on coastal communities and immediate consequence on public health. Among the studies of plume dynamics performed in the vicinity of both outfalls, Project MB-4 in the Mamala Bay Study recently made with the funding in the $ 9 million amount statistically dealt with the near-field behavior of the plumes at the Sand Island and Honouliuli outfalls. However, Project MB-4 predicted much higher surfacing frequency than the realistic value obtained by model studies by Oceanit Laboratories, Inc.. It is suggested that improvements should be made in the application of the plume model to more simulate the actual discharge characteristics and ocean conditions. In this study, it has been recommended that input parameters in plume models reflect realistic density profile over the entire water column since. in the previous Mamala Bay Study, the density profiles were measured at 5m depth increments extending from 13 to 63 m depth (the density profile on the upper portion of water column was not included, Roberts 1995). It is proved that the density stratification is the important parameter for the submergence of the plume. In this study, as one of the important parameters, plume rise and initial dilution reflecting the density profile over the entire water column have been taken into account for more reliable plume behavior description.

  • PDF

Dynamics of the River Plume (하천수 플룸 퍼짐의 동력학적 연구)

  • Yu, Hong-Sun;Lee, Jun;Shin, Jang-Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.4
    • /
    • pp.413-420
    • /
    • 1994
  • Dynamics of the river plume is a very complicated non-linear problem with the free boundary changing in time and space. Mixing with the ambient water through the boundary makes the problem more complicated. In this paper we reduced 3-dimensional problem into 1-dimensional one by using the integral analysis method. Basic equations have been integrated over the lateral and vertical variations. For these integrations we adopted the well-established assumption that the flow-axis component of plume velocity and the density difference of the plume with the ambient water have Gaussian distributions in directions which are perpendicular to the flow-axis of the plume. We also used the result of our previous study on the lateral spreading velocity of the plume derived under the same assumption. And entrainment was included as a mixing process. The resultant 1-dimensional equations were solved by Runge-Kutta numerical method. Consequently, comparatively easy method of numerical analysis is presented for the 3-dimensional river plume. The method can also be used for the analysis of the thermal plume of cooling water of power plants.

  • PDF

A Study of Core Water Injection Effect Influencing Plume in 75 tf $1^{st}$ Stage Liquid Propellant Rocket Engine Ground Test (75톤 1단 액체로켓엔진 지상시험에서 중앙 물분사가 후류에 미치는 영향 고찰)

  • Moon, Yoon-Wan;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.129-135
    • /
    • 2011
  • A study of efficient plume cooling by core water injection type was performed by computational fluid dynamics. A side injection type is well known, on the contrary, a core injection type is not well known. In order to figure out the characteristics of core injection type, several calculations were performed by computational fluid dynamics along various mass flow rates and locations of water injection. On the basis of analysis it was the adequate cooling condition that water mass flow rate to total mass flow rate was two times at least and location of water injections was L/De=1.2.

Nanoparticle Synthesis by Pulsed Laser Ablation of Consolidated Microparticles (압밀 금속 마이크로 입자의 펄스 레이저 ABLATION에 의한 나노입자 합성)

  • 장덕석;오부국;김동식
    • Laser Solutions
    • /
    • v.5 no.2
    • /
    • pp.31-38
    • /
    • 2002
  • This paper describes the process of nanoparticle synthesis by laser ablation of consolidated microparticles. We have generated nanoparticles by high-power pulsed laser ablation of Al, Cu and Ag microparticles using a Q-switched Nd:YAG laser (wavelength 355 nm, FWHM 5 ㎱, fluence 0.8∼2.0 J/㎠). Microparticles of mean diameter 18∼80 ㎛ are ablated in the ambient air The generated nanoparticles are collected on a glass substrate and the size distribution and morphology are examined using a scanning electron microscope and a transmission electron microscope. The effect of laser fluence and collector position on the distribution of particle size is investigated. The dynamics of ablation plume and shock wave is analyzed by monitoring the photoacoustic probe-beam deflection signal. Nanosecond time-resolved images of the ablation process are also obtained by laser flash shadowgraphy. Based on the experimental results, discussions are made on the dynamics of ablation plume.

  • PDF