• Title/Summary/Keyword: platoon merging

Search Result 3, Processing Time 0.017 seconds

Vehicle Platooning Remote Control via State Estimation in a Communication Network (통신 네트워크에서 상태 추정에 의한 군집병합의 원격제어)

  • 황태현;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.192-192
    • /
    • 2000
  • In this paper, a platoon merging is considered as a remote-controlled system with the state represented by a stochastic process. In this system, it becomes to encounter situations where a single decision maker controls a large number of subsystems, and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike classical estimation problem in which the observation is a continuous process corrupted by additive noise, there is a constraint that the observation must be coded and transmitted over a digital communication channel with finite capaci쇼. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. Using the coder-estimator sequence, the remote control station designs a feedback controller. In this paper, we introduce a stochastic model for the lead vehicle in a platoon of vehicles considering the angle between a road surface and a horizontal plane as a stochastic process. The simulation results show that the inter-vehicle distance and the deviation from the desired inter-vehicle distance are well regulated.

  • PDF

State Estimation and Control in a Network for Vehicle Platooning Control (차량 군집주행을 위한 제어 네트워크의 변수 추정 및 제어)

  • Choi, Jae-Weon;Fang, Tae-Hyun;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.659-665
    • /
    • 2000
  • In this paper a platoon merging control system is considered as a remotely located system with state represented by a stochastic process. in the system it is common to encounter situations where a single decision maker controls a large number of subsystems and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike a classical estimation problem where the observation is a continuous process corrupted by additive noise there is a constraint that the observation must be coded and transmitted over a digital communication channel with fintie capacity. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. in this paper we introduce a stochastic model for the lead vehicle in a platoon of vehicles in a lane considering the angle between the road surface and a horizontal plane as a stochastic process. In order to merge two platoons the lead vehicle of the following platoon is controlled by a remote control station. Using the observation transmitted over communication channel the remote control station designs the feedback controller. The simulation results show that the intervehicle spacings and the deviations from the desired intervehicle spacing are well regulated.

  • PDF

Dynamic Network Loading Model based on Moving Cell Theory (Moving Cell Theory를 이용한 동적 교통망 부하 모형의 개발)

  • 김현명
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.113-130
    • /
    • 2002
  • In this paper, we developed DNL(Dynamic Network Loading) model based on Moving cell theory to analyze the dynamic characteristics of traffic flow in congested network. In this paper vehicles entered into link at same interval would construct one cell, and the cells moved according to Cell following rule. In the past researches relating to DNL model a continuous single link is separated into two sections such as running section and queuing section to describe physical queue so that various dynamic states generated in real link are only simplified by running and queuing state. However, the approach has some difficulties in simulating various dynamic flow characteristics. To overcome these problems, we present Moving cell theory which is developed by combining Car following theory and Lagrangian method mainly using for the analysis of air pollutants dispersion. In Moving cell theory platoons are represented by cells and each cell is processed by Cell following theory. This type of simulation model is firstly presented by Cremer et al(1999). However they did not develop merging and diverging model because their model was applied to basic freeway section. Moreover they set the number of vehicles which can be included in one cell in one interval so this formulation cant apply to signalized intersection in urban network. To solve these difficulties we develop new approach using Moving cell theory and simulate traffic flow dynamics continuously by movement and state transition of the cells. The developed model are played on simple network including merging and diverging section and it shows improved abilities to describe flow dynamics comparing past DNL models.