• Title/Summary/Keyword: plating time

Search Result 296, Processing Time 0.038 seconds

Fabrication of a Ultrathin Ag Film on a Thin Cu Film by Low-Temperature Immersion Plating in an Grycol-Based Solution (글리콜 용매 기반 저온 치환 은도금법으로 형성시킨 동박막 상 극박 두께 Ag 도금층)

  • Kim, Ji Hwan;Cho, Young Hak;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • To investigate the plating properties of a diethylene glycol-based Ag immersion plating solution containing citric acid, silver immersion plating was performed in a range from room temperature to $50^{\circ}C$ using sputtered Cu specimens. The used Cu specimens possessed surface structure with large numbers of pinholes which were created with over-acid etching. The Ag immersion plating performed at $40^{\circ}C$ exhibited that the pinholes and copper surface were completely filled with Ag just after 5 min mainly due to galvanic displacement reaction, indicating the best plating properties. Subsequently, the surface morphology of Ag-coated Cu became rougher as the plating time increased to 30 min because of the deposition of silver nanoparticles created by chemical reduction in the solution. The specimen that its overall surface was covered with silver indicated the start of oxidation at temperature higher than around $50^{\circ}C$ in air as compared with pure Cu, indicating enhanced anti-oxidation properties.

연구논문 초록(1967~1978)

  • 한국표면공학회
    • Journal of the Korean institute of surface engineering
    • /
    • v.16 no.4
    • /
    • pp.199-214
    • /
    • 1983
  • Up to this date, numerous methods of analysis of electroplating solutions are published. Some, however, need lots of works before reaching final results, or require high technique and special instruments, and also some are unaccurate due to unclearnes of end point. Like our undevelope countries, technicians of electoplating shops are most high school gradutes or under, and have not much knowledge on chemistry. Furthermore, those technicians have to control their plating solutions by themselves without having enough analytical laboratory equiIJment. Therefore, in this paper the simplest, besides accurate method is investigated after comparing nu.merous methods published. Among the methods of 'copper determinations from acid and alkaline copper plating baths, EDT A titration method are chosen, due to these methods are the simplest and fastest for the evaluation of metal content, without requiring any special instrument. For acid copper solutions, chelate titrations were accurate enough. Since the end point of titration of chelate method is variable according to the kind of .indicators androther metal's coexsistence as well as solution comIJonent, many difficulties were encountered from cyanide' copper, on the contrary of acid copper bath. PAN, PV, and MX indicators were tried, but it is found that MX is the best. In cyanide solution, due to cyanide is the masking reagent, elimination of this component is essential, and finally found that elimination eN- by precipitation with AgN03 solution was the simplest and the most accurate way among others. This method was very accurate for the new plating solutions even coexistence with organic brightners. However used solutions for long months running have to be predetermined the accurate copper value by thiosulfate method from time to time, before chelate titration by means of AgN03 precipitation. Always some constant deviatioJ;ls will be seen according to the solutions nature. Therefore those deviation values have to be compensated each time.

  • PDF

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.

Roles of Nickel Layer Deposition on Surface and Electric Properties of Carbon Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Bae, Kyong-Min;Moon, Cheol-Whan;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1630-1634
    • /
    • 2011
  • Electroless plating of metallic nickel on carbon fiber surfaces was carried out to control specific electric resistivity of the fibers, and the effects of the nickel content and coating thickness on the electric properties were studied. The structural and surface properties of the carbon fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The specific resistivity of the fibers was measured using a four-point probe testing method. From the XPS results, the oxygen and Ni atomic ratio of the fibers was greatly enhanced as the plating time increased. Additionally, it was observed that the specific electric resistivity decreased considerably in the presence of metallic nickel particles and with the formation of nickel layers on carbon fibers.

Preparation of Low-cost and Flexible Metal Mesh Electrode Used in the Hybrid Solar Cell by Simple Electrochemical Depositon (전기화학적 전착에 의한 태양전지용 저가 유연 금속 메쉬 제작)

  • Lee, Ju-Yeol;Lee, Sang-Yeol;Lee, Ju-Yeong;Kim, Man
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.123.1-123.1
    • /
    • 2017
  • Hybrid solar cells have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible and transparent devices. It is critical to fabricate individual layer composed of organic and inorganic materials in the hybrid solar cell at low cost. Therefore, it is required to manufacture cheaply and enhance the photon-to-electricity conversion efficiency of each layer in the flexible solar cell industry. In this research, we fabricated pure Cu metal mesh electrode prepared by using electroplating and/or electroless plating on the Ni mold which was manufacture through photolithography, electroforming, and polishing process. Copper mesh was formed on the surface of nickel metal working master when pulsed electrolytic copper deposition were performed at various plating parameters such as plating time, current density, and so on. After electrodeposition at 2ASD for 5~30seconds, the line/pitch/thickness of copper mesh sheet was $1.8{\sim}2.0/298/0.5{\mu}m$.

  • PDF

Cu CMP Characteristics and Electrochemical plating Effect (Cu 배선 형성을 위한 CMP 특성과 ECP 영향)

  • Kim, Ho-Youn;Hong, Ji-Ho;Moon, Sang-Tae;Han, Jae-Won;Kim, Kee-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.252-255
    • /
    • 2004
  • 반도체는 high integrated, high speed, low power를 위하여 design 뿐만 아니라 재료 측면에서도 많은 변화를 가져오고 있으며, RC delay time을 줄이기 위하여 Al 배선보다 비저항이 낮은 Cu와 low-k material 적용이 그 대표적인 예이다. 그러나, Cu 배선의 경우 dry etching이 어려우므로, 기존의 공정으로는 그 한계를 가지므로 damascene 또는 dual damascene 공정이 소개, 적용되고 있다. Damascene 공정은 절연막에 photo와 RIE 공정을 이용하여 trench를 형성시킨 후 electrochemical plating 공정을 이용하여 trench에 Cu를 filling 시킨다. 이후 CMP 공정을 이용하여 절연막 위의 Cu와 barrier material을 제거함으로서 Cu 배선을 형성하게 된다. Dual damascene 공정은 trench와 via를 동시에 형성시키는 기술로 현재 대부분의 Cu 배선 공정에 적용되고 있다. Cu CMP는 기존의 metal CMP와 마찬가지로 oxidizer를 이용한 Cu film의 화학반응과 연마 입자의 기계가공이 기본 메커니즘이다. Cu CMP에서 backside pressure 영향이 uniformity에 미치는 영향을 살펴보았으며, electrochemical plating 공정에서 발생하는 hump가 CMP 결과에 미치는 영향과 dishing 결과를 통하여 그 영향을 평가하였다.

  • PDF

Anther Culture Efficiency According to Plating Method in Naked Barley (쌀보리 약배양을 위한 약치상 방법별 배양효율)

  • Park, Tae-Il;Jeoung, Sun-Ok;Kim, Young-Jin;Kim, Hyun-Soon;Seo, Jae-Hwan;Park, Ki-Hun;Kim, Jung-Gon;Yun, Song-Joong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.237-242
    • /
    • 2007
  • Barley anther culture is hard working to plating picking out anther from the glume and demand long time comparing to be short available development stage for effective culture. Also, it has been treatment massive materials due to low plantlet comparing to get desirable plants intensively. Consequently, this experiment was carried out trying to be more high barley anther culture effectively in terms of save plating effort. Plating materials and culture temperature affected anther culture efficiency are among the inoculation tissues or organs such as anthers, spikelets and whole panicles, culture efficiency was higher with spikelets in two-rowed than six-rowed barley due primarily to a lower contamination, and calli were induced within 30 to 50 days. Callus induction and plant regeneration rates were higher in cultures at $25^{\circ}C$ than at $15^{\circ}C$ and $20^{\circ}C$. Days to callus induction were 25 to 50 days at $25^{\circ}C$ and 50 to 60 days at $20^{\circ}C$.

Study on Heavy Metal Desorption and Recovery of the Carbon Foam used in Industrial Plating Wastewater Treatment as Adsorbent (산업도금폐수 처리에 사용된 탄소폼 흡착소재의 중금속 탈착 및 회수에 관한 연구)

  • Lee, Da-Young;Lee, Chang-Gu;Kim, Dae-Woon;Park, Sang-Hyen;Kweon, Ji-Hyang;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.627-634
    • /
    • 2016
  • We investigated the characteristics of heavy metal desorption and recovery from carbon foam after plating wastewater treatment. The heavy metal desorption depends on solution chemistry because desorption occurred in HCl and $H_2SO_4 $ solution but did not occur in distilled water. Heavy metal desorption efficiency was increased using ultrasonication with desorption solution. The higher ultrasonic power and the longer reaction time improve efficiency. The copper plating rinse solution was treated reliably by carbon foam adsorbent during 200 bed volume. The adsorbed copper was dissolved using desorption solution and recovered by DC power supply. After copper recovery, the reuse efficiency of desorption solution was 84.2%.

NO Adsorption and Catalytic Reduction Mechanism of Electrolytically Copper-plated Activated Carbon Fibers (전해 구리 도금된 활성탄소섬유에 의한 NO의 촉매 환원반응 메커니즘 연구)

  • Park, Soo-Jin;Jang, Yu-Sin;Kawasaki, Junjiro
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.664-668
    • /
    • 2002
  • In this work, the catalytic reduction mechanisms of NO over ACFs/copper prepared by electrolytic copper plating has been studied. It was found that copper content on carbon surfaces increased with increasing the plating time. However, a slightly gradual decrease of adsorption properties, such as, BET specific surface area, was observed in increasing the plating times within the range of well-developed micropore structures. As experimental results, nitric oxide was converted into the nitrogen and oxygen on ACFs and ACFs/copper catalyst surfaces at $500^{\circ}C$. Especially, the surfaces of ACFs/copper catalyst were found to scavenge the oxygen released by catalytic reduction of NO, which could be explained by the presence of another nitric oxide reduction mechanism between ACFs and ACFs/copper catalysts.

Studies of Electroless Ni-plating on Surface Properties of Carbon Fibers and Mechanical Interfacial Properties of Composites (화학환원 니켈도금 처리에 따른 탄소섬유 표면 및 복합재료의 기계적 계면 특성)

  • 박수진;장유신;이재락
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.218-225
    • /
    • 2001
  • The electroless plating of a metallic nickel on PAN-based carbon fiber surfaces was carried out to improve mechanical interfacial properties of the carbon fiber/epoxy resin composites which were unidirectionally fabricated by a prepregging method. In this work, the influence of Ni-P alloy concentration showing brittle-to-ductile transition was investigated on interlaminar shear strength (ILSS) and impact strength of the composites. The surface properties of carbon fibers were also measured by X-ray photoelectron spectroscopy (XPS). As the result, the $O_{ls}$ /$O_{ls}$ ratio or Ni and P amounts were increased with increasing electroless nickel plating time but the ILSS were not significantly improved. However, the impact properties was significantly improved in the presence of Ni-P alloy in the carbon fiber surface, resulting in an increase of the ductility of the composites.

  • PDF