• Title/Summary/Keyword: plates with mixed boundary conditions

Search Result 17, Processing Time 0.021 seconds

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.

Quasi-3D static analysis of two-directional functionally graded circular plates

  • Wu, Chih-Ping;Yu, Lu-Ting
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.789-801
    • /
    • 2018
  • A weak-form formulation of finite annular prism methods (FAPM) based on Reissner's mixed variational theorem (RMVT), is developed for the quasi three-dimensional (3D) static analysis of two-directional functionally graded (FG) circular plates with various boundary conditions and under mechanical loads. The material properties of the circular plate are assumed to obey either a two-directional power-law distribution of the volume fractions of the constituents through the radial-thickness surface or an exponential function distribution varying doubly exponentially through it. These FAPM solutions of the loaded FG circular plates with both simply-supported and clamped edges are in excellent agreement with the solutions obtained using the 3D analytical approach and two-dimensional advanced plate theories available in the literature.

Boundary discontinuous Fourier solution of thin Levy type flat and doubly curved shallow shells

  • Ahmet Sinan Oktem;Ilke Algula
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.595-608
    • /
    • 2024
  • This study presents a static analysis of thin shallow cylindrical and spherical panels, as well as plates (which are a special case of shells), under Levy-type mixed boundary conditions and various loading conditions. The study utilizes the boundary discontinuous double Fourier series method, where displacements are expressed as trigonometric functions, to analyze the system of partial differential equations. The panels are subjected to a simply supported type 3 (SS3) boundary condition on two opposite edges, while the remaining two edges are subjected to clamped type 3 (C3) boundary conditions. The study presents comprehensive tabular and graphical results that demonstrate the effects of curvature on the deflections and moments of thin shallow shells made from symmetric and antisymmetric cross-ply laminated composites, as well as isotropic steel materials. The proposed model is validated through comparison with existing literature, and the convergence characteristics are demonstrated. The changing trends of displacements and moments are explained in detail by investigating the effect of various parameters, such as stacking lamination, material types, curvature, and loading conditions.

Mixed finite element formulation for folded plates

  • Eratli, Nihal;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.155-170
    • /
    • 2002
  • In this study, a new functional is obtained for folded plates with geometric (kinematic) and dynamic (natural) boundary conditions. This functional is the combination of two different functionals. Both functionals are obtained for thick plates which carry in-plane and lateral forces. A new mixed finite element is developed with $4{\times}13$ nodal parameters for folded plates (REC52). Forces and moments which are the necessary unknowns in engineering problems are obtained directly using the technique suggested here. The use of the global co-ordinate system causes time consuming operations and therefore the Lagrange multiplier method is used to relate the components of the parameters on the fold line. Numerical results are presented for folded plates and compared with experimental results.

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions: the case that straight and curved boundaries are mixed (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 진동해석 : 직선 및 곡선 경계가 혼합된 경우)

  • Choi, Jang-Hoon;Kang, Sang-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.534-537
    • /
    • 2005
  • Free Vibration Analysis using Non-dimensional Dynamic Influence Function (NDIF) is extended to arbitrarily shaped plates including polygonal plates. Since the corners of polygonal plates have indefinite normal directions and additional boundary conditions related to a twisting moment at a corner along with moment and shear force zero conditions, it is not easy to apply the NDIF method to polygonal plates wi th the free boundary condition. Moreover, owing to the fact that the local polar coordinate system, which has been introduced for free plates with smoothly varying edges, cannot be employed for the straight edges of the polygonal plates, a new coordinate system is required for the polygonal plates. These problems are solved by developing the new method of modifying a corner into a circular arc and setting the normal direction at the corner to an average value of normal direct ions of two edges adjacent to the corner. Some case studies for plates with various shapes show that the proposed method gives credible natural frequencies and mode shapes for various polygons that agree well with those by an exact method or FEM (ANSYS).

  • PDF

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

Free vibration analysis of Reissner plates by mixed finite element

  • Eratli, Nihal;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.277-298
    • /
    • 2002
  • In this study, free vibration analysis of Reissner plates on Pasternak foundation is carried out by mixed finite element method based on the G$\hat{a}$teaux differential. New boundary conditions are established for plates on Pasternak foundation. This method is developed and applied to numerous problems by Ak$\ddot{o}$z and his co-workers. In dynamic analysis, the problem reduces to the solution of a standard eigenvalue problem and the mixed element is based upon a consistent mass matrix formulation. The element has four nodes and bending and torsional moments, transverse shear forces, rotations and displacements are the basic unknowns. The element performance is assessed by comparison with numerical examples known from literature. Validity limits of Kirchhoff plate theory is tested by dynamic analysis. Shear locking effects are tested as far as $h/2a=10^{-6}$ and it is observed that REC32 is free from shear locking.

Mixed Mode Analysis of Bonded Anisotropic Structures With a Crack (크랙 이 있는 異方性 接着構造物 의 혼합모우드 解析)

  • 홍창선;정광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.145-152
    • /
    • 1983
  • An adhesively bonded anisotropic structure containing a part-through crack subjected to in-plane mixed mode deformations is investigated. The problem is reduced to a pair of Fredholm integral equations of the second kind by mathematical analysis. By solving these equations numerically stress intensity factors k$_{1}$ and k$_{2}$ are presented. Two cases are considered with respect to fiber orientations. Case one is to fix the fiber orientations of sound plate bonded to cracked plate with various fiber orientations. The other is to vary fiber orientations for both plates. As boundary conditions, tension and shear loading respectively, are applied to bonded anisotropic plates to observe mixed mode deformations.