• Title/Summary/Keyword: plates vibration

Search Result 871, Processing Time 0.024 seconds

Interlaminar Fracture Toughness of CFRP Laminate Plates by Resin Content (CFRP 적층판의 수지함량이 층간파괴인성치에 미치는 영향)

  • 강태식;김지훈;심재기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.675-678
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon fiber reinforcement plastics). Specimens used in this experiment are CF/EPOXY laminated plates. In this experiments, Split Hopkinson s Bar test was applied to dynamic and notched flexure test. The mode II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reactions at the supported points. As an experimental result, the vibration amplitude of 〔$0_{10}F_4/0_{10}$〕laminates appear more than that of 〔0_{10}/F_2/0_{10}$〕laminates for the J-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen with the increase of displacement velocity becomes great at a measuring point with in range of measurement.

  • PDF

Analysis of the Free Vibrations of Rectangular Plates Using Database (데이터베이스를 이용한 사각평판의 자유진동 해석)

  • No, Seung-Hun;Jo, Han-Jung;Choe, Eun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1978-1990
    • /
    • 2000
  • In this study, the free vibrations of the cantilever plate, which is one of the most frequently used elements in various machine structures, are analyzed and further the results are utilized to develop the methodology to predict and control the natural frequencies for designing stabilized systems. The proposed method has three major steps. The first step is the frequency response test to investigate the natural frequencies of some plates, then the database is constituted from experiments and the FEM, and finally the natural frequencies are predicted using the database to be cross-checked by the identification test. The result of this study will help design many different stable structures without any complicated calculations.

Estimation of stress concentration factor in bolt jointed structure with variable preload (체결력에 따른 볼트 결합구조물의 응력집중계수 평가)

  • 송준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.298-303
    • /
    • 1998
  • Most of mechanical structures are combined of substructures such as beam and/or plates. There are few system with unibody structures but are not a few systems with united body structures. Generally the dynamic analysis of whole structures is perform ed under alternating load. However, the analysis of each joint area is more important than others for zero severity. This paper presents the results of analysis of concentration stress in bolt jointed structure with variable preload. At frist, a static vibration test was performed to find out a nominal stress of bolt joint ed plates from the relationship between natural frequency and nominal stress. Then a concentration stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promising implications for safer design with fatigue quality index of stress concentration factor and has merit for cost down and saving time at the beginning of vehicle development.

  • PDF

Dynamic behaviour of multi-stiffened plates

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.277-296
    • /
    • 2009
  • The paper investigates the dynamic behaviour of stiffened panels. The coupled differential equations for eccentric stiffening configuration are first derived. Then a semi-analytical procedure for dynamic analysis of stiffened panels is presented. Unlike finite element or finite strip methods, where the plate is discretized into a set of elements or strips, the plate in this procedure is treated as a single element. The potential energy of the structure is first expressed in terms generalized functions that describe the longitudinal and transverse displacement profiles. The resulting non-linear strain energy functions are then transformed into unconstrained optimization problem in which mathematical programming techniques are employed to determine the magnitude of the lowest natural frequency and the associated mode shape for pre-selected plate/stiffener geometric parameters. The described procedure is verified with other numerical methods for several stiffened panels. Results are then presented showing the variation of the natural frequency with plate/stiffener geometric parameters for various stiffening configurations.

Vibration Analysis of the Moving Plates Subjected to the Force of Gravity

  • Jooyong Cho;Kim, Doyeon;Lee, Usik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.3-10
    • /
    • 2003
  • The use of frequency-dependent dynamic stiffness matrix (or spectral element matrix) in structural dynamics may provide very accurate solutions, while it reduces the number of degrees-of-freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the thin plates moving with constant speed under uniform in-plane tension and gravity. The concept of Kantorovich method and the principle of virtual displacement is used in the frequency-domain to formulate the dynamic stiffness matrix. The present spectral element model is evaluated by comparing its solutions with the exact analytical solutions. The effects of moving speed, in-plane tension and gravity on the natural frequencies of the plate are numerically investigated.

  • PDF

Damage detection in stiffened plates by wavelet transform

  • Yang, Joe-Ming;Yang, Zen-Wei;Tseng, Chien-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.126-135
    • /
    • 2011
  • In this study, numerical analysis was carried out by using the finite element method to construct the first mode shape of damaged stiffened plates, and the damage locations were detected with two-dimensional discrete wavelet analysis. In the experimental analysis, four different damaged stiffened structures were observed. Firstly, each damaged structure was hit with a shaker, and then accelerometers were used to measure the vibration responses. Secondly, the first mode shape of each structure was obtained by using the wavelet packet, and the location of cracks were also determined by two-dimensional discrete wavelet analysis. The results of the numerical analysis and experimental investigation reveal that the proposed method is applicable to detect single crack or multi-cracks of a stiffened structure. The experimental results also show that fewer measurement points are required with the proposed technique in comparison to those presented in previous studies.

A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate

  • Amar, Lemya Hanifi Hachemi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2018
  • This work investigates a novel plate formulation and a modified couple stress theory that introduces a variable length scale parameter is presented to discuss the static and dynamic of functionally graded (FG) micro-plates. A new type of third-order shear deformation theory of Reddy that use only 4 unknowns by including undetermined integral variables is proposed in this study. The equations of motion are derived from Hamilton's principle. Analytical solutions are obtained for a simply supported micro-plate. Numerical examples are presented to examine the effect of the length scale parameter on the responses of micro-plates. The obtained results are compared with the previously published results to demonstrate the correctness of the present formulation.

A Study on the Vibration Analysis of Composite Laminated Structure Using F.E.M (유한 요소법을 이용한 복합 적층 구조물의 진동 해석 연구)

  • 허동현;김영권;신귀수;이기형;정인성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.220-228
    • /
    • 1997
  • We discuss finite element approximation and use a Mindlin plate element based upon uniformly reduced numerical integration. The finite element selected for use in this work is a four-node, bilinear displacement element based upon the Mindlin theory of plates. Such elements show good accuracy for laminated composite plates when reduced numerical integration is used to evaluate the element marices. This study presents both the experimental and F.E. results for the natural frequencies of CFRPURETHANE-CFRP Composite plate. Good agreement between experimental and calculated frequencies is achived.

  • PDF

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

Analysis of functionally graded beam using a new first-order shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Tlidji, Y.;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.315-325
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory. The governing equations and boundary conditions of functionally graded beams have the simple forms as those of isotropic plates. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.