• Title/Summary/Keyword: plates vibration

Search Result 872, Processing Time 0.027 seconds

The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates

  • Farokhian, Ahmad
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.733-742
    • /
    • 2020
  • Vibration analysis in nanocomposite plate with smart layer is studied in this article. The plate is reinforced by carbon nanotubes where the Mori-Tanaka law is utilized for obtaining the effective characteristic of structure assuming agglomeration effects. The nanocomposite plate is located in elastic medium which is simulated by spring element. The motion equations are derived based on first order shear deformation theory and Hamilton's principle. Utilizing Navier method, the frequency of the structure is calculated and the effects of applied voltage, volume percent and agglomeration of Carbon nanotubes, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with applying negative voltage, the frequency of structure is increased. In addition, the agglomeration of carbon nanotubes reduces the frequency of the nanocomposite plate.

Random Vibration Analysis of Thick Composite Laminated Plate Using Mixed Finite Element Model (1) (혼합유한요소모델을 이용한 두꺼운 복합적층판의 불규칙 진동해석(1)-이론적 고찰)

  • Seok, Keun-Yung;Kang, Joo-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.190-196
    • /
    • 2004
  • Thick composite laminated plates is considered in 3D finite-element. To consider continuity of transverse stresses and displacement field, mixed finite-element has been developed by using layerwise theory and the minimum potential energy principle. Mixed finite-element has been enforced through the thick direction, Z, of a laminated plate by considering six degree-of-freedoms per node. Six degree-of-freedoms are three displacement components in the coordinate axes directions and three transverse stress components ${\sigma}_z,\;{\tau}_{xz},\;{\tau}_{yz}$. The model maintain the fundamental elasticity relations that are stress-strain relation and displacement-strain relation, because the transverse stress components invoked as nodal degrees of freedom by using the fundamental elasticity relationship between th components of stress and displacement. Random vibration analysis of the model is performed by computing consistent mass matrix and computing covariance in frequency domain technique.

  • PDF

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

Wave Propagation in the Strip Plate with Longitudinal Stiffeners

  • Kim, H.;Ryue, J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.102-107
    • /
    • 2013
  • It is important to understand the vibrating behavior of plate structures for many engineering applications. In this study, vibration characteristics of strip plates which have finite width and infinite length are investigated theoretically and numerically. The waveguide finite element approach is used in this study which is known as an effect tool for waveguide structures. WFE method requires only cross-sectional FE model and uses theoretical harmonic solutions for the wave propagation along the longitudinal direction. First of all for a simple strip plate, WFE results are compared with theoretical ones such as the dispersion diagrams, point mobilities, etc. to validate the numerical model. Then in the numerical analysis, the several different types of longitudinal stiffeners are included to the plate model to investigate the effects of the stiffeners in terms of the dispersion curves and mobilities.

  • PDF

Active control of sound fields from vibrating plates using piezoelectric and viscoelastic material (압전재료와 점탄성재료를 이용한 평판진동 음장의 능동제어)

  • 강영규;김재환;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.311-315
    • /
    • 2002
  • The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been carried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.

  • PDF

Dynamic Characteristic Analysis of Trapezoidal Cantilever Plates Undergoing Translational Acceleration (가속을 받는 사다리꼴 외팔 평판의 동특성 해석)

  • 임홍석;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.268-273
    • /
    • 2002
  • A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed

  • PDF

Measurement of Plate Vibration by Using Phase Signals (위상신호를 이용한 단순평판의 진동계측)

  • 함연수;김정수;김관주
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.949-954
    • /
    • 2000
  • Applicability of the vibration signal phase for predicting the modal damping properties of structures is investigated. For uniform plates with different internal damping levels, the phase delay as a function of the frequency span as well as a function of the distance between the excitation and response measurement points are experimentally obtained. Dependence of the phase characteristics on the amount of structural damping is elucidated -more heavily damped plate shows notably reduced phase delay at intermediate distances. The experimental results compare favorably with analytical predictions, and show much promise for further refinement as a tool for estimating structural properties.

  • PDF

Comparison of Performance of Sound Insulation Panel for Transformer (변압기용 차음판의 성능 비교)

  • Jeong, H.E.;Choi, B.K.;Kim, H.J.;Gu, D.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1302-1305
    • /
    • 2006
  • Recently, demands for the reduction of noise generated by transformers have been increasing. Accordingly the noise of transformer occasion displeasing to residents therefore the transformer needs to decrease of noise. One method of reduction such a noise is to build a free-standing enclosure of concrete and steel plates around the transformer, however, this method has some disadvantages, for example, a lage area is needed for equipment installation. In the paper, the vibration and noise effect which is transferred from reinforce channel to insulation panel generated by transformer have been identified for the several kinds of insulation panel and damping sheet experimentally.

  • PDF