• 제목/요약/키워드: platelets

검색결과 526건 처리시간 0.04초

Cell Separation through chemically modified polyurethane membranes

  • Akon Higuchi;Ryoko Hayashi;Yamamiya, Shin-ichi;Hanako Kitamura
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.55-58
    • /
    • 2004
  • Cell separation from peripheral blood was investigated using surface-modified polyurethane (PU) membranes with different functional groups. Both red blood cells and platelets could pass through unmodified PU and PU-SO$_3$H membranes, while the red blood cells preferentially passed through PU-N(C$_2$H$_{5}$ )$_2$ and PU-NHC$_2$H$_4$OH membranes. The permeation ratio of T and B cells was less than 25% for the surface-modified and unmodified PU membranes. CD34$^{+}$ cells have been recognized as various kinds of stem cells including hematopoietic and mesenchymal stem cells. The adhesiveness of CD34$^{+}$ cells on the PU membranes was found to be higher than that of red blood cells, platelets, T cells or B cells. Overall, the adhesiveness of blood cells on the PU membranes increased in the following order: red blood cells $\leq$ platelets < T cells $\leq$ B cells < CD34$^{+}$ cells. Treatment of PU-COOH membranes with a human albumin solution to detach adhered blood cells, allowed recovery of mainly CD34$^{+}$ cells in the permeate, while both red blood cells and platelets could be isolated in the permeate using unmodified PU membranes. The PU membranes showed different permeation and recovery ratios of specific cells depending on the functional groups attached to the membranes.mbranes.

  • PDF

Antiplatelet activity of esculetin through the down-regulation of PI3K/MAPK pathway

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.317-322
    • /
    • 2021
  • Among the different cardiovascular disorders (CVDs), the activation of platelets is a necessary step. Based on this knowledge, therapeutic treatments for CVDs that target the disruption of platelet activation are proving to be worthwhile. One such substance, a bioactive 6,7-dihydroxy derived from coumarin, is 6,7-Dihydroxy-2H-1-benzopyran-2-one (esculetin). This compound has demonstrated several pharmacological effects on CVDS as well as various other disorders including diabetes, obesity, and renal failure. In various reports, esculetin and its effect has been explored in experimental mouse models, human platelet activation, esculetin-inhibited collagen, and washed human platelets exhibiting aggregation via arachidonic acid. Yet, esculetin affected aggregation with agonists like U46619 or thrombin in no way. This study investigated esculetin and how it affected human platelet aggregation activated through U46619. Ultimately, we confirmed that esculetin had an effect on the aggregation of human platelets when induced from U46619 and clarified the mechanism. Esculetin interacts with the downregulation of both phosphoinositide 3-kinase/Akt and mitogen-activated protein kinases, important phosphoproteins that are involved in activating platelets and their signaling process. The effects of esculetin reduced TXA2 production, phospholipase A2 activation, and platelet secretion of intracellular granules (ATP/serotonin), ultimately causing inhibition of overall platelet aggregation. These results clearly define the effect of esculetin in inhibiting platelet activity and thrombus formation in humans.

Thapsigargin Induces Platelet Aggregation, thereby Releases Lactate Dehydrogenase from Rat Platelets

  • Baik, Ji Sue;Seo, You Na;Rhee, Man Hee;Park, Moon-Taek;Kim, Sung Dae
    • 대한의생명과학회지
    • /
    • 제27권3호
    • /
    • pp.170-176
    • /
    • 2021
  • Thapsigargin (TG), a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) inhibitor, has been widely used as an agonist for platelet aggregation for decades. In this study, we investigated the effect of TG on the release of lactate dehydrogenase (LDH) for platelets and elucidated its mechanism. Platelet LDH release and platelet aggregation were increased by TG treatment; 1,000 nM of TG induced the complete lysis of platelets. Other agonists such as collagen (2.5 ㎍/mL), thrombin (0.1 U/mL), and ADP (10 mM) did not induce significant platelet LDH release despite platelet aggregation. Finally, we investigated the effects of pharmacological inhibitors on TG-induced platelet aggregation and LDH release. SP600125, a JNK inhibitor, and LY294002, a PI-3K inhibitor, inhibited TG-induced platelet LDH release but not platelet aggregation. Forskolin, an adenylyl cyclase activator, also inhibited LDH release without affecting platelet aggregation by TG. These results suggest that the TG-induced platelet aggregation was accompanied by LDH release but regulated by a different signaling pathway.

Thrombus Formation Inhibition of Esculetin through Regulation of Cyclic Nucleotides on Collagen-Induced Platelets

  • Lee, Dong-Ha
    • 대한의생명과학회지
    • /
    • 제27권4호
    • /
    • pp.270-276
    • /
    • 2021
  • Physiological agents trigger a signaling process called "inside-out signaling" and activated platelets promote adhesion, granule release, and conformational changes of glycoprotein IIb/IIIa (αIIb/β3). Activated αIIb/β3 interacts with fibrinogen and initiates a second signaling step called "external signaling". These two signaling pathways can cause hemostasis or thrombosis, and thrombosis is a possible medical problem in arterial and venous vessels, and platelet-mediated thrombosis is a major cause of cardiovascular disease (CVD). Therefore, modulating platelet activity is important for platelet-mediated thrombosis and cardiovascular disease. Esculetin is a coumarin-based physiologically active 6,7-dihydroxy derivative known to have pharmacological activity against obesity, diabetes, renal failure and CVD. Although some studies have confirmed the effects of esculetin in human platelet activation and experimental mouse models, it is not clear how esculetin has antiplatelet and antithrombotic effects. We confirmed the effect and mechanism of action of escultein on human platelets induced by collagen. As a result, esculetin decreased Ca2+ recruitment through upregulation of inositol 1, 4, 5-triphosphate receptor. In addition, esculetin upregulates cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)-dependent pathways and inhibits fibrinogen binding and thrombus contraction. Our results demonstrate the antiplatelet effect and antithrombotic effect of esculetin in human platelets. Therefore, we suggest that esculetin could be a potential phytochemical for the prevention of thrombus-mediated CVD.

Anti-platelet effects of Artesunate through Regulation of Cyclic Nucleotide on Collagen-induced Human Platelets

  • Dong-Ha Lee
    • 대한의생명과학회지
    • /
    • 제29권1호
    • /
    • pp.41-47
    • /
    • 2023
  • Discovery of new substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound from plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer's disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets, and the formation of a thrombus are currently not understood. This study examined the ways artesunate affects platelets activation and thrombus formation induced by collagen. As a result, cAMP and cGMP production were increased significantly by artesunate relative to the doses, as well as phosphorylated VASP and IP3R, substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R, phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artesunate inhibited thrombin-induced thrombus formation. Therefore, we suggest that artesunate has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.

Protective Effects of BCC Against Oxidative Stress in Cardiomyocyte Cells

  • Bong-Geun Shin;Dae-Kwan Kim
    • 대한의생명과학회지
    • /
    • 제30권1호
    • /
    • pp.10-16
    • /
    • 2024
  • Oxidative stress caused by elevated reactive oxygen species (ROS) in the heart causes various heart diseases. Oxidative stress is known as a factor that causes diseases in various organs as well as the heart. Diseases such as heart failure, myocardial infarction, and cardiomyopathy caused by oxidative stress in the heart can be treated with medication or surgery. Recently, blood cells concentrate (BCC) is used in various treatment areas such as orthopedics, gynecology, and urology. BCC therapy is applied to treatment by concentrating platelets and white blood cells necessary for regeneration through simple centrifugation using autologous blood. As the platelets are activated, many growth factors are released from alpha granules of the platelets. Growth factors such as TGF-β1, PDGF, VEGF, and EGF derived from platelets are involved in various cell signaling pathway. Due to these growth factors, BCC can contribute to tissue regeneration and can treat various diseases. CD34+ cells contained in BCC may also play an important role in tissue regeneration. In this study, we investigated whether BCC has a regenerative effect on heart disease, and if so, what mechanism causes the effect. To observe this, cardiomyocyte cells were treated with H2O2 to induce oxidative stress. And the effect was confirmed in the presence or absence of BCC. As a result, in the presence of BCC, the oxidative stress of cardiomyocyte cells was reduced and cell damage was also reduced. These results suggest that BCC therapy can be a new treatment alternative for heart disease.

Synchrotron-based Transmission X-ray Microscopy (TXM) Observations of Fully Hydrated Blood Platelets and Their Activation Process

  • Yang, Nuri;Nho, Hyun Woo;Kalegowda, Yogesh;Kim, Jin Bae;Song, Jaewoo;Shin, Hyun-Joon;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2625-2629
    • /
    • 2014
  • Platelets are anuclear discoid-shaped blood cells with key roles in human body. To understand the mechanisms of their activation process, it is required to have analytical imaging techniques capable of acquiring platelet images under fully hydrated conditions. Herein, for the first time, we demonstrate the capability of synchrotron-based transmission X-ray microscopy (TXM) to study platelets (resting and ADP activated) under hydrated and air-dried conditions. To confirm the biological imaging capability of TXM, fixed platelets were imaged and compared with whole mount electron microscopy (EM) images. TXM provided morphological information with sufficient spatial resolution with simple and quick sample preparation procedure. We also observed temporal changes during the platelet activation, which initially had a discoid shape (0 s), formed pseudopodia (30 s) and generated a network of fibrin (5 min). Our results clearly demonstrate the potential of TXM technique to study fully hydrated biological samples under in situ conditions.

Aluminium Hydroxides Gel을 이용한 α-Al2O3 판상체의 제조 (Preparation of α-Al2O3 Platelets from Aluminum Hydroxides Gel)

  • 박병기;이정민;서동수;임광수
    • 한국세라믹학회지
    • /
    • 제41권8호
    • /
    • pp.610-617
    • /
    • 2004
  • 평균입자크기가 20 ${\mu}$이고, 두께가 0.2∼0.3 ${\mu}m$${\alpha}-Al_2O_3$ 판상체를 제조하기 위하여 전구물질로써 황산알루미늄과 황산나트륨을 사용하여 수산화알루미늄을 제조하였다. 이때 첨가되는 인산나트륨의 양이 ${\alpha}Al_2O_3$ 판상체의 입자크기, 형상, 그리고 두께에 어떠한 영향을 미치는지에 대하여 관찰하였다. 인산나트륨을 첨가하지 않았을 경우, 대부분의 ${\alpha}-Al_2O_3$ 판 상체가 육각판상모양을 띠고 있었으나 그 두께가 1.0 ${\mu}m$ 이상으로 진주안료 기질로는 적합하지 않았다. 반면, 인산나트륨이 첨가되었을 경우, ${\alpha}-Al_2O_3$ 판상체의 두께를 감소시켜 각형비를 증가시키는 현상을 초래하였다.

진공채혈관의 상태에 따른 평가 (Evaluation of Vacutainer Distribution Conditions)

  • 박창은
    • 대한임상검사과학회지
    • /
    • 제48권2호
    • /
    • pp.109-113
    • /
    • 2016
  • 분석전 변이로 인하여 검사실은 오류에 직면하게 되고 많은 요인들은 환자의 검사결과에 영향을 미치게 된다. 다양한 진공채혈관은 신속하게 분리하고 방치된 검체의 용혈을 방지한다. 그러나 진공채혈관의 상태에 따라 몇 가지 제한점들이 발생하는데 이러한 문제점을 알아보기 위해 다양한 진공채혈관을 이용해 혈구산정검사로 비교 평가하였다. 유통기한별 검사결과에서는 백혈구(WBC)와 혈소판(PLT)의 값에서 0.24, 0.21로 큰 변이계수를 나타냈고 상관성에서는 백혈구(WBC), 혈소판(PLT), 적혈구(RBC)의 값이 유의성을 보였다(p<0.01). 한편 각 3사의 비교평가에서는 백혈구(WBC), 혈소판(PLT)의 값에서 0.27, 0.21로 가장 큰 변이계수를 나타냈고, 상관성에서는 각 3사가 모두 백혈구(WBC), 혈소판(PLT), 혈소판분포폭(PDW)의 값에서 높은 유의한 차이를 보였다(p<0.01) 그러나 G사와 B사는 혈소판(PLT), 혈소판분포폭(PDW)의 값에서는 낮은 유의한 차이를 보였다(p<0.05). 결론적으로 진공채혈관의 상태에 따른 분석의 안정성을 위해 적절한 진공채혈관의 분석평가가 이루어져야 한다.

Poly(r-benzyl L-glutamate)/ poly(ethylene glycol) block 공중합체 표면의 항혈전성에 관한 연구 (Antithrombogenicity of the Surfacfe of Poly(r-benzyl L-glutamate)/ Poly(ethylene glycol) Block Copolymer)

  • 조종수;송수창
    • 대한의용생체공학회:의공학회지
    • /
    • 제8권2호
    • /
    • pp.199-204
    • /
    • 1987
  • ABA type block copolymers composed of r benzyle L-glutamate as the A component and poly(ethylene glycol) as the B components were obtained. Platelet adhesion on their sunfaces was investigated by a column elusion method to examine the effects of microdomain and secondary structure. The number of platelets adhered from whole blood and plasma rich platelet was smaller for the block copolymer systems than for the homopolymers. In the block copolymer system, the number of platelets adrered on their surfaces increased with increasing the content of PEG, that is, with decreasing of a-helix of block copolymers. A thick thrombus formation on the PBLG homopolymer was observed than block copolymer by scanning electron micrographs. The platelets adhesion increased with increasing the critical surface tension of the block copolymer.

  • PDF