• Title/Summary/Keyword: plate waves

Search Result 318, Processing Time 0.025 seconds

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Fundamental stuyd on reflection phenomenon of weak pressure-wave from an open end of a pipe (관단으로부터 미소 압력파의 반사에 관한 기초적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.5
    • /
    • pp.618-626
    • /
    • 1998
  • This paper describes a series of fundamental studies on reflection and emission of weak pressure waves from an open end of a pipe. Acoustical theories which have been employed in the plane pressure waves inside a pipe are applied to the present study. The objective of the present study is to investigate the reflection or emission coefficient of pressure wave at an open end of a pipe, the length of open end correction, and the directivity characteristics of the pressure waves emitted from the pipe. The results show that the reflection coefficient of pressure wave at an open end and the length of open end correction decrease for the wave length of pressure wave to increase. It is also found that the reflection coefficient for a baffle plate at the exit of pipe is larger than that for no baffle plate.

Submerged Porous Plate Wave Absorber

  • PARK W.T.;LEE S.H.;KEE S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.9-14
    • /
    • 2005
  • In the present paper, the wave absorbing performance of the fully submerged horizontal porous plates has been investigated, numerically and experimentally. The submerged porous system is composed of multi-layered horizontal porous plates that are clamped at the vertical setwall, which are slightly inclined and placed vertically, in parallel, with spacing. The hydrodynamic interaction of incident waves with the rigid porous multi-layered plates was formulated within the context of linear wave-body interaction theory and Darcy's law. In order to validate the effectiveness of the present computing code, the numerical results were compared with the analytical and experimental results. It is found that triple horizontal porous plates with slight inclination, if properly tuned for wave energy dissipation against the standing waves in front of the vertical wall, can have high performances in reducing the reflected wave amplitudes against the incident waves over a wide range of wave frequency.

Removal of bias and conjugate image using the modified conoscopic holography (변형된 코노스코픽 홀로그래피를 이용한 바이어스와 공액영상의 제거)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.22-27
    • /
    • 2015
  • Conoscopic holography, which consists of two linear polarizers and two wave plates, and an uniaxial crystal, is incoherent holographic technology for three-dimensional display. In the uniaxial crystal, the wave from object divides into extraordinary and ordinary waves and phase difference between two waves is caused by the different refractive index of two waves. Four intensity patterns, which are made by phase difference, are obtained using LCLV(liquid crystal light valve) and conoscopic holography system. By combining four intensity patterns, the complex hologram without bias and conjugate image. In this paper, we propose the optimized system, which consists of a wave plate and a linear polarizer, and uniaxial crystal. In the proposed system, it doesn't need LCLV. By adjusting the azimuth angle of a linear polarizer and a wave plate, we derive four intensity patterns in recording plane. We demonstrate theoretically that the complex hologram with bias and a conjugate image is obtained using the proposed system.

NUMERICAL ANALYSIS OF THE SHOCK WAVES IN COMPRESSIBLE SOLIDS AND LIQUIDS USING A SIX-EQUATION DIFFUSE INTERFACE MODEL (6-방정식 확산경계 모델을 이용한 압축성 고체 및 액체에서 충격파 해석)

  • Yeom, Geum-Su
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.99-107
    • /
    • 2012
  • In this paper, the shock waves in compressible solids and liquids are simulated using a six-equation diffuse interface multiphase flow model that is extended to the Cochran and Chan equation of state. A pressure relaxation method based on a volume fraction function and a pressure-correction equation are newly implemented to the six-equation model. The developed code has been validated by a shock tube problem with liquid nitromethane and an impact problem of a copper plate on a solid explosive. In addition, a new problem, an impact of a copper plate on liquid nitromethane, has been solved. The present code well shows the wave structures in compressible solids and liquids without any numerical oscillations and overshoots. After the impact of a solid copper plate on liquid, two shock waves (one propagates into liquid and the other into solid) are generated and a material interface moves to the impacting direction. The computational results show that the shock velocity inside the liquid linearly increases with the impact velocity.

Stress Wave Reduction of Structures Using MR Inserts (MR Insert를 이용한 구조물의 응력파 저감)

  • 강병우;김재환;최승복;김경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.71-77
    • /
    • 2001
  • In this paper, stress wave propagation characteristics of MR(Magneto-rheological) inserts are experimentally investigated. Generally, stress waves of structures such as warships or submarines are induced by shock waves from underwater explosion. Their fatal effects on the shipboard equipments or structures damage the performance of warships. But, such a problem can be solved by controlling the stress waves propagating through structures by means of MR inserts. MR insert consists of two aluminum layers and MR fluid filled in between. Two piezoceramic disks are embedded on the host plate as a transmitter and a receiver of stress waves. Pulse waves are generated by the transmitter and they reach to the receiver through the MR insert. Permanent magnet and magnetic coil are used to produce magnetic field at the MR insert. In the presence of magnetic field, MR particles are arranged in chains parallel to the magnetic field such that the transmitted stress waves are reduced. Attenuation of stress waves is experimentally investigated.

  • PDF

A Reduction Method of Reflected Waves for Investigation of Sound Source Location

  • Jang Yun-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.4
    • /
    • pp.251-255
    • /
    • 2005
  • When the extracorporeal shock wave lithotriptor is operated, sounds can be heard. Then that might be a question about the location where the sounds come from. For the purpose of investigating the fact, we identify the location of the sounds radiated using one hydrophone. In order to carry out the experiment, it is needed to obtain direct waves from objects. Therefore, we present an experimental method to reduce reflected waves for obtaining direct waves only. The experimental results show the amplitude of waves can be attenuated about 28dB due to a silicon rubber plate of 8.5mm attached at the bottom. This is a quantified result that can expect to obtain the direct waves using the proposed method. Then, we carried out the experiment for the sound source location. From the experimental results, we can undoubtedly present a fact that the sounds are radiated from the objects to be shot due to shock waves.

A Study on the Characteristics of Elastic Wave Propagation in Plates Using Double Pulsed Laser Holographic Interferometry (이중펄스레이저 홀로그래픽 간섭법을 이용한 평판의 탄성파 전파특성에 관한 연구)

  • Lee, Ki-Baik;Na, Jong-Moon;Kim, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3211-3223
    • /
    • 1996
  • In this paper, the propagation of elastic wave generated by loading impact to plates made of isotropic of anisotropic material was studied. And the influence of boundary conditions (free or clamped edge) upon the reflection of elastic wave was anlyzed. Also, double exposure holographic interferometer using ruby pulse laser was formed in order to investigate transient waves. Before the elasitc wave was reflected from the edges, the elastic wave of isotropic plate such as aluminum plate showed circular interferometric fringe pattern, whereas that of anisotropic plate such as epoxy composite laminates showed elliptical one. And the transverse displacement curves obtained from experiment and theory for both plates agreed well. Also, the waves reflected from the boundary edges showed much differences according to the boundary condition of edges.

Source Localization of an Impact on a Plate using Time-Frequency Analysis (시간 주파수 분석을 이용한 충격발생 위치 추정)

  • Park, Jin-Ho;Choi, Young-Chul;Lee, Jeong-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.107-111
    • /
    • 2005
  • It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses fer the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment.

  • PDF

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.