• Title/Summary/Keyword: plate finite element

Search Result 2,157, Processing Time 0.027 seconds

A Study on the Free Vibration of a Square Plate with Various Hole Position (사각평판에서 홀의 위치에 따른 자유진동에 관한 연구)

  • 김현수;안찬우;최경호;김동영;김형준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.132-139
    • /
    • 2003
  • In this study, it is attempted to obtain the optimum size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues by performing free vibration analysis for each model. Moreover, the specimen is produced from optimized square plate and eigenvalue of each plate is measured through the shocking load. And then the result is compared with that of finite element analysis. For free vibration analysis of the square plate, the boundary condition of finite element analysis and experiment is assumed as both ends clamped support. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency which is dependent on the location of holes and further studies are considered to be necessary fur the basic design information.

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj;Choudhury, Achintya;Sharma, Avadesh K.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.113-132
    • /
    • 2018
  • This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.

Dynamic Behavior Analysis of Rotor-Bearing System Under External Forces in Swash Plate Compressor (외부 가진력을 고려한 사판식 압축기 회전축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2001
  • The dynamic behavior of rotor-bearing system used in swash plate compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element is formulated including the field element for a shaft section and the point element for swash plate, disk pulley and bearings. The Houbolt method is used to consider the time march for the integration of the system equations. The transient whirl response of rotating shaft supported on roller bearings is obtained, considering compression forces and unbalance forces at swash plate and driving pulley. And, the steady state displacements of the rotor are compared with a variation in unbalance mass. Results show that the loci of rotating shaft considering unbalance forces and external compression forces are more severe in flutter motion than with only unbalance forces.

p-Version Finite Element Analysis of Stiffened Plates Including Transverse Shear Deformation (전단 변형을 고려한 보강판의 p-Version 유한요소 해석)

  • 홍종현;우광성;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.145-152
    • /
    • 1995
  • A general stiffener element which includes transverse shear deformation(TSD) is formulated using the p-version of finite element method. Hierarchic C"-shape functions, derived from Integrals of Legendre polynomials, are used to define the assembled stiffness matrix of the stiffener and plate on the basis of 5 D.0.F displacement fields. The stiffness matrix for the stiffener with respect to the local reference frame is transformed to the plate reference system by applying the appropriate transformation matrices in order to insure compatibility of displacements at the junction of the stiffener and plate. The transformation matrices which account for the orientation and the eccentricity effects of the stiffener with respect to the plate reference axes are used to find local behavior at the junction of the stiffener and the relative contributions of the plate and stiffener to the strength of the composite system. The results obtained by the p-version of the finite element method are compared with the results in literatures, especially those by the h-version software, MICROFEAP-II.P-II.

  • PDF

Variational approximate for high order bending analysis of laminated composite plates

  • Madenci, Emrah;Ozutok, Atilla
    • Structural Engineering and Mechanics
    • /
    • v.73 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This study presents a 4 node, 11 DOF/node plate element based on higher order shear deformation theory for lamina composite plates. The theory accounts for parabolic distribution of the transverse shear strain through the thickness of the plate. Differential field equations of composite plates are obtained from energy methods using virtual work principle. Differential field equations of composite plates are obtained from energy methods using virtual work principle. These equations were transformed into the operator form and then transformed into functions with geometric and dynamic boundary conditions with the help of the Gâteaux differential method, after determining that they provide the potential condition. Boundary conditions were determined by performing variational operations. By using the mixed finite element method, plate element named HOPLT44 was developed. After coding in FORTRAN computer program, finite element matrices were transformed into system matrices and various analyzes were performed. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Numerical and Experimental Approach to Investigate Plane-view Shape and Crop Loss in Multistage Plate Rolling (다단 후판압연에서 평면형상 및 실수율 고찰을 위한 수치적, 실험적 연구)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1117-1125
    • /
    • 2013
  • A finite element based approach that can be used to investigate the plane-view shape and crop loss of a material during plate rolling is presented. We employed a three-dimensional finite element model to continuously simulate the shape change of the head and tail of a plate as the number of rolling passes increases. The main feature of the proposed model lies in the fact that the multistage rolling can be simulated without a break because the rolling direction of the material is reversibly controlled as the roll gap sequentially decreases. The material constants required in the finite element analysis were experimentally obtained by hot tensile tests. We also performed a pilot hot plate rolling test to verify the usefulness of the proposed finite element model. Results reveal that the computed plane-view shapes as well as crop losses by the proposed finite element model were in good agreement with the measured ones. The crop losses predicted by the proposed model were within 5% of those measured from the pilot hot plate rolling test.

Model Updating of Plate with Shape Change Using Parameter Modification (진동 파라미터 수정을 사용한 형상변화가 있는 판의 모델개선)

  • 최유근;김옥구;윤병옥;장인식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1260-1265
    • /
    • 2001
  • It is important to model the mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structural dynamics. In the finite element modeling, the errors can be contained from the physical parameters, the approximation of the boundary conditions, and the element modeling, From the dynamic test. more precise dynamic characteristics can be obtained. Model updating using parameter modification is appropriate when the design parameter is used to analyze the input parameter like finite element method. Finite element analysis for free-free-free-free(FFFF) and clamped-free-free-free(CFFF) plate with uniform area and shape change are carried out as model updating examples, Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies.

  • PDF

hp-Version of the Finite Element Analysis for Reissner-Mindlin Plates (Reissner-Mindlin 평판의 hp-Version 유한요소해석)

  • 우광성;이기덕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.39-44
    • /
    • 1992
  • This paper is concerned with formulations of the hierarchical $C^{o}$-plate element on the basis of Reissner-Mindlin plate theory. On reason for the development of the aforementioned element is that it is still difficult to construct elements based on h-version concepts which are accurate and stable against the shear locking effects. An adaptive mesh refinement and selective p-distribution of the polynomial degree using hp-version of the finite element method we proposed to verify the superior convergence and algorithmic efficiency with the help of the clamped L-shaped plate problems.s.

  • PDF

Is it shear locking or mesh refinement problem?

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • Locking phenomenon is a mesh problem and can be staved off with mesh refinement. If the studier is not preferred going to the solution with increasing mesh size or the computer memory can stack over flow than using higher order plate finite element or using integration techniques is a solution for this problem. The purpose of this paper is to show the shear locking phenomenon can be avoided by increase low order finite element mesh size of the plates and to study shear locking-free analysis of thick plates using Mindlin's theory by using higher order displacement shape function and to determine the effects of various parameters such as the thickness/span ratio, mesh size on the linear responses of thick plates subjected to uniformly distributed loads. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 4-, 8- and 17-noded quadrilateral finite elements are used. It is concluded that 17-noded finite element converges to exact results much faster than 8-noded finite element, and that it is better to use 17-noded finite element for shear-locking free analysis of plates.