• 제목/요약/키워드: plate equations

검색결과 1,103건 처리시간 0.018초

The influence of the initial strains of the highly elastic plate on the forced vibration of the hydro-elastic system consisting of this plate, compressible viscous fluid, and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.;Aliyev, Soltan A.
    • Coupled systems mechanics
    • /
    • 제6권4호
    • /
    • pp.439-464
    • /
    • 2017
  • The hydro-elastic system consisting of a pre-stretched highly elastic plate, compressible Newtonian viscous fluid, and the rigid wall is considered and it is assumed that on the plate a lineal-located time-harmonic force acts. It is required to investigate the dynamic behavior of this system and determine how the problem parameters and especially the pre-straining of the plate acts on this behavior. The elasticity relations of the plate are described through the harmonic potential and linearized (with respect to perturbations caused by external time-harmonic force) form of these relations is used in the present investigation. The plane-strain state in the plate is considered and the motion of that is described within the scope of the three-dimensional linearized equations of elastic waves in elastic bodies with initial stresses. The motion of the fluid is described by the linearized Navier-Stokes equations and it is considered the plane-parallel flow of this fluid. The Fourier transform with respect to the space coordinate is applied for a solution to the corresponding boundary-value problem. Numerical results on the frequency response of the interface normal stress and normal velocity and the influence of the initial stretching of the plate on this response are presented and discussed. In particular, it is established that the initial stretching of the plate can decrease significantly the absolute values of the aforementioned quantities.

병렬판구조를 이용한 3분력 로드셀 감지부의 설계 (Design of sensing element for 3-component load cell using parallel plate structure)

  • 김갑순;강대임;정수연;주진원
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

A multiple scales method solution for the free and forced nonlinear transverse vibrations of rectangular plates

  • Shooshtari, A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제24권5호
    • /
    • pp.543-560
    • /
    • 2006
  • In this paper, first, the equations of motion for a rectangular isotropic plate have been derived. This derivation is based on the Von Karmann theory and the effects of shear deformation have been considered. Introducing an Airy stress function, the equations of motion have been transformed to a nonlinear coupled equation. Using Galerkin method, this equation has been separated into position and time functions. By means of the dimensional analysis, it is shown that the orders of magnitude for nonlinear terms are small with respect to linear terms. The Multiple Scales Method has been applied to the equation of motion in the forced vibration and free vibration cases and closed-form relations for the nonlinear natural frequencies, displacement and frequency response of the plate have been derived. The obtained results in comparison with numerical methods are in good agreements. Using the obtained relation, the effects of initial displacement, thickness and dimensions of the plate on the nonlinear natural frequencies and displacements have been investigated. These results are valid for a special range of the ratio of thickness to dimensions of the plate, which is a characteristic of the Multiple Scales Method. In the forced vibration case, the frequency response equation for the primary resonance condition is calculated and the effects of various parameters on the frequency response of system have been studied.

Dynamics of the oscillating moving load acting on the hydroelastic system consisting of the elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.403-430
    • /
    • 2016
  • This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented and discussed and the focus is on the influence of the effect caused by the interaction between oscillation and moving of the external load. During these discussions, the corresponding earlier results by the authors are used which were obtained in the cases where, on the system under consideration, only the oscillating or moving load acts. In particular, it is established that the magnitude of the aforementioned interaction depends significantly on the vibration phase of the system.

Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings

  • Mohammadimehr, Mehdi;Meskini, Mohammad
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.69-82
    • /
    • 2020
  • In this study, the free and forced vibration analysis of micro sandwich plate with porous core layer and magneto-electric face sheets based on modified couple stress theory and first order shear deformation theory under simply supported boundary conditions is illustrated. It is noted that the core layer is composed from balsa wood and also piezo magneto-electric facesheets are made of BiTiO3-CoFe2O4. Using Hamilton's principle, the equations of motion for micro sandwich plate are obtained. Also, the Navier's method for simply support boundary condition is used to solve these equations. The effects of applied voltage, magnetic field, length to width ratio, thickness of porous to micro plate thickness ratio, type of porous, coefficient of porous on the frequency ratio are investigated. The numerical results indicate that with increasing of the porous coefficient, the non-dimensional frequency increases. Also, with an increase in the electric potential, the non-dimensional frequency decreases, while and with increasing of the magnetic potential is vice versa.

Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces

  • Mohammadzadeh, Behzad;Choi, Eunsoo;Kim, Dongkyun
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.601-621
    • /
    • 2019
  • This study presents a comprehensive nonlinear dynamic approach to investigate the linear and nonlinear vibration of sandwich plates fabricated from functionally graded materials (FGMs) resting on an elastic foundation. Higher-order shear deformation theory and Hamilton's principle are employed to obtain governing equations. The Runge-Kutta method is employed together with the commercially available mathematical software MAPLE 14 to solve the set of nonlinear dynamic governing equations. Method validity is evaluated by comparing the results of this study and those of previous research. Good agreement is achieved. The effects of temperature change on frequencies are investigated considering various temperatures and various volume fraction index values, N. As the temperature increased, the plate frequency decreased, whereas with increasing N, the plate frequency increased. The effects of the side-to-thickness ratio, c/h, on natural frequencies were investigated. With increasing c/h, the frequencies increased nonlinearly. The effects of foundation stiffness on nonlinear vibration of the sandwich plate were also studied. Backbone curves presenting the variation of maximum displacement with respect to plate frequency are presented to provide insight into the nonlinear vibration and dynamic behavior of FGM sandwich plates.

The influence of the coupling effect of physical-mechanical fields on the forced vibration of the hydro-piezoelectric system consisting of a PZT layer and a viscous fluid with finite depth

  • Zeynep Ekicioglu, Kuzeci;Surkay D., Akbarov
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.247-263
    • /
    • 2023
  • The paper deals with the study of the mechanical time-harmonic forced vibration of the hydro-piezoelectric system consisting of the piezoelectric plate and compressible viscous fluid with finite depth. The exact equations of motion of the theory of linear electro-elasticity for piezoelectric materials are employed for describing the plate motion, however, the fluid flow is described by employing the linearized Navier-Stokes equations for a compressible (barotropic) viscous fluid. The plane-strain state in the plate and the plane flow of the fluid are considered and the corresponding mathematical problems are solved by employing the Fourier transform with respect to the space coordinate which is on the coordinate axis directed along the platelying direction. The expressions of the corresponding Fourier transform are determined analytically, however, the inverse transforms are found numerically. Numerical results on the interface pressure and the electrical potential are obtained for various PZT materials and these results are discussed. According to these results, in particular, it is established that the electromechanical coupling effect can significantly decrease the interface pressure.

Forced vibrations of an elastic circular plate supported by unilateral edge lateral springs

  • Celep, Zekai;Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.451-463
    • /
    • 2022
  • The present study deals with forced vibrations of an elastic circular plate supported along its circular edge by unilateral elastic springs. The plate is assumed to be subjected to a uniformly distributed and a concentrated load. Under the combination of these loads, equations of motion are explicitly derived for static and dynamic response analyses by assuming a series of the displacement functions of time and other unknown parameters which are to be determined by employing Lagrangian functional. The approximate solution is sought by applying the Lagrange equations of motions by using the potential energy of the external forces that includes the contributions of the edge forces and the external moments, i.e., those of the effects of the boundary condition to the analysis. For the numerical treatment of the problem in the time domain, the linear acceleration procedure is adopted. The tensionless character of the support is taken into account by using an iterative process and, the coordinate functions for the displacement field are selected to partially fulfill the boundary conditions so that an acceptable approximation can be achieved faster. Numerical results are presented in the figures focusing on the nonlinearity of the problem due to the plate lift-off from the unilateral springs at the edge support.

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

Transversely isotropic thick plate with two temperature & GN type-III in frequency domain

  • Lata, Parveen;Kaur, Iqbal
    • Coupled systems mechanics
    • /
    • 제8권1호
    • /
    • pp.55-70
    • /
    • 2019
  • This investigation is focused on the variations in transversely isotropic thick circular plate due to time harmonic thermomechanical sources. The homogeneous thick circular plate in presence and absence of energy dissipation and two temperatures has been considered. Hankel transform is used for solving field equations. The analytical expressions of conductive temperature, displacement components, and stress components are computed in the transformed domain. The effects of frequency at different values are represented graphically. Some specific cases are also figured out from the current research.