• 제목/요약/키워드: plate assembly technique

검색결과 19건 처리시간 0.026초

Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique

  • Ghannadpour, S.A.M.;Mehrparvar, M.
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.227-239
    • /
    • 2020
  • The aim of this study is to obtain the nonlinear and post-buckling responses of relatively thick functionally graded plates with oblique elliptical cutouts using a new semi-analytical approach. To model the oblique elliptical hole in a FGM plate, six plate-elements are used and the connection between these elements is provided by the well-known Penalty method. Therefore, the semi-analytical technique used in this paper is known as the plate assembly technique. In order to take into account for functionality of the material in a perforated plate, the volume fraction of the material constituents follows a simple power law distribution. Since the FGM perforated plates are relatively thick in this research, the structural model is assumed to be the first order shear deformation theory and Von-Karman's assumptions are used to incorporate geometric nonlinearity. The equilibrium equations for FGM plates containing elliptical holes are obtained by the principle of minimum of total potential energy. The obtained nonlinear equilibrium equations are solved numerically using the quadratic extrapolation technique. Various sets of boundary conditions for FGM plates and different cutout sizes and orientations are assumed here and their effects on nonlinear response of plates under compressive loads are examined.

원자력 발전소용 압력용기의 볼트 연결 조립부 구조설계를 위한 3차원 접촉 응력 해석 (Three-Dimensional Contact Stress Analysis for Structural Design of Bolted Joint Assembly of Pressure Vessels in Nuclear Power Plants)

  • 이부윤;김태완
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.122-128
    • /
    • 1999
  • Bolted joint assembly for nuclear power plants consists of various components : cover plate, retainer plate, manway flange, gasket and stud bolts/nuts. To guarantee the soundness of the joint, it is important to prevent leakage through the gasket and reduce the stress concentration factor at the thread root. In this paper, Submodeling technique for the finite element method is proposed to accurately compute three dimensional contact stresses which govern the sealing performance and the maximum contact stresses at the threads root. For verification of global solutions used as boundary conditions of submodel solution, the stresses on the cover plate and the manway flange are measured by strain gages when internal pressure is applied to the bolted joint assembly. The numerical results are compared with the experimental results.

  • PDF

박막형 열전 소자를 이용한 Chip-on-Board(COB) 냉각 장치의 설계 (A Design of Thin Film Thermoelectric Cooler for Chip-on-Board(COB) Assembly)

  • 유정호;이현주;김남재;김시호
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1615-1620
    • /
    • 2010
  • A thin film thermoelectric cooler for COB direct assembly was proposed and the COB cooler structure was modeled by electrical equivalent circuit by using SPICE model of thermoelectric devices. The embedded cooler attached between the die chip and metal plate can offer the possibility of thin film active cooling for the COB direct assembly. We proposed a driving method of TEC by using pulse width modulation technique. The optimum power to the TEC is simulated by using a SPICE model of thermoelectric device and passive components representing thermal resistance and capacitance. The measured and simulated results offer the possibility of thin film active cooling for the COB direct assembly.

Field Emission from Single-Walled Carbon Nanotubes Aligned on a Gold Plate using Self-Assembly Monolayer

  • Lee, Ok-Joo;Jeong, Soo-Hwan;Lee, Kun-Hong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.305-308
    • /
    • 2002
  • Field emission from single-walled carbon nanotubes (SWNTs) aligned on a patterned gold surface is reported. The SWNTs emitters were prepared at room temperature by a self-assembly monolayer technique. SWNTs were cut into sub-micron length by sonication in an acidic solution. Cut SWNTs were attached on the gold surface by the reaction between the thiol groups and the gold surface. The field emission measurement showed that the turn-on field was 4.8 $V/{\mu}m$ at the emission current density of 10 ${\mu}A/cm^2$. The current density was 0.5 $mA/cm^2$ at 6.6 $V/{\mu}m$. This approach provides a novel route for fabricating CNT-based field emission displays.

  • PDF

3차원 공간 판구조물의 유한요소 해석에 관한 연구 (A Study on the Finite Element Analysis of Three Dimensional Plate Structures)

  • 권오영;남정길
    • 수산해양기술연구
    • /
    • 제35권1호
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

유한요소해석을 이용한 증육 모델의 성형특성 연구 (Study of Forming Properties for an Edge Thickening Model Using the Finite Element Method)

  • 조종두;김영진
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.234-239
    • /
    • 2012
  • This study examines the forming properties and forming loads needed to increase the edge thickness on the external face of a plate using finite element analysis(FEA). Recently, forming optimization techniques within FEA are being extensively used in designing the optimal forming conditions for processes like forging, extrusion, rolling, and spinning. Most of these existing forming operations involve reducing the volume per unit length, but research for increasing volume per unit length is not very extensive. For this study we chose an automotive engine flywheel which is a welded assembly of a plate and a gear with each component having a different thickness. We considered a forming technique to increase the thickness in order to allow the machining of the gear directly on the external face of plate alleviating the need for a weld. To study various forming techniques, we used the finite element method with the flow stress of material and incremental forming steps. We conclude from this study that the analysis of forming properties and forming loads by using the finite element analysis and testing is useful as a method to increase the thickness per unit length.

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.

Novel High-Throughput DNA Part Characterization Technique for Synthetic Biology

  • Bak, Seong-Kun;Seong, Wonjae;Rha, Eugene;Lee, Hyewon;Kim, Seong Keun;Kwon, Kil Koang;Kim, Haseong;Lee, Seung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권8호
    • /
    • pp.1026-1033
    • /
    • 2022
  • This study presents a novel DNA part characterization technique that increases throughput by combinatorial DNA part assembly, solid plate-based quantitative fluorescence assay for phenotyping, and barcode tagging-based long-read sequencing for genotyping. We confirmed that the fluorescence intensities of colonies on plates were comparable to fluorescence at the single-cell level from a high-end, flow-cytometry device and developed a high-throughput image analysis pipeline. The barcode tagging-based long-read sequencing technique enabled rapid identification of all DNA parts and their combinations with a single sequencing experiment. Using our techniques, forty-four DNA parts (21 promoters and 23 RBSs) were successfully characterized in 72 h without any automated equipment. We anticipate that this high-throughput and easy-to-use part characterization technique will contribute to increasing part diversity and be useful for building genetic circuits and metabolic pathways in synthetic biology.

Behavior of structures repaired by hybrid composite patches during the aging of the adhesive

  • Habib Achache;Rachid Zahi;Djaafar Ait Kaci;Ali Benouis
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.135-147
    • /
    • 2024
  • The objective of this study is to analyze, using the finite element method, the durability of damaged and repaired structures under the effect of mechanical loading coupled with environmental conditions (water absorption and/or temperature). The study is based on the hybrid patch repair technique, considering several parameters based on the J integral to observe the behavior of the adhesive in transferring load from a damaged plate to the repair patch. The results clearly show that water absorption and increased temperature cause degradation of the mechanical properties of the adhesive, leading to an increase in its plasticization, which is beneficial for the assembly's strength. However, the degradation of the adhesive's properties due to aging in the repair results in poor load transfer from the damaged area to the patch. The findings of this study allowed the authors to conclude that the [0°]8 sequence consistently offers the best performance, with the lowest J integral values and superior crack resistance. The lowest the J integral for the [0°]8 stacking sequence is typically 3-7% lower than that of the [0/-45/45/90]S and [0/-45/90/45]S sequences at elevated temperatures. At 60℃, the J integral increases by approximately 3-6% compared to 40℃ and 20, depending on the aging duration and stacking sequences.

유한요소해석에 의한 압입 접촉손상 특성 연구 (Study of the Damage Property of a Contacted Indent by Finite Element Method)

  • 조재웅;김춘식;이희성;김영춘
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.5974-5979
    • /
    • 2014
  • 압입 방식으로서 경량화된 부품이 매우 균질한 정밀도로 생산이 되며 프레스의 기술이 향상되고 있다. 압입 방식으로 조립하였을 시 핀과 구멍사이에는 압축력에 의한 변형력이 발생되고 접촉면이 손상을 입는다. 따라서 본 연구에서는 CATIA 프로그램을 이용하여 3D 모델링하였으며, ANSYS 프로그램을 통하여 압입 접촉된 평면에서 손상평가를 하였다. 해석결과, 핀이 들어갈 때 PCB판에 작용하는 하중은 약 21.3N인 것으로 확인되었으며, PCB판이 Pin에서 빠져나올 때의 하중은 약 19.24N으로 나타났다. 또한 구조 해석결과, Pin 1이 본 연구 모델의 모든 부품들 중에서 가장 최대응력이 많이 발생하므로, 대표적으로 Pin 1의 최대 등가응력이 192.96MPa로 나타났다. 압입 접촉 손상 특성을 규명하고 본 연구결과를 실제의 압입 공정의 설계에 응용함으로서 그 파손을 방지하고 내구성을 평가할 수 있다고 사료된다.