• Title/Summary/Keyword: plastoglobule

Search Result 4, Processing Time 0.018 seconds

Plastoglobule in chloroplast and its role in prenylquinone metabolism (엽록체 지질 소기관의 기능과 지질대사에서의 역할)

  • Kim, Hyun Uk;Kim, Eun-Ha;Lee, Kyeong-Ryeol;Jung, Su-Jin;Roh, Kyung Hee;Kim, Jong-Bum
    • Journal of Plant Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.125-134
    • /
    • 2013
  • Lipid droplets called plastoglobules are present in all plastid types. In chloroplasts, they are surrounded by the outer lipid monolayer from and connected to thylakoid membrane. The plastoglobule core contains the neutral lipids, which includes prenylquinones, triacylglycerols, and carotenoids. During stress and various developmental stages such as senescence, the size and number of plastoglobules increase due to the accumulation of lipids. Plastoglobules proteome revealed the presence of metabolic enzymes as well as structural proteins, plastoglobulins/fibrillins. Among the metabolic enzymes, the tocopherol cyclase, VTE1 and the NADPH quinine dehydrogenase, NDC1 have demonstrated that these participate in isoprenoid lipid metabolic pathways at the plastoglobule, notably in the metabolism of prenylquinones (tocopherol, plastoquinol and phylloquinone).

Ultrastructure of Capitate Glandular Trichome in Leaf of Thymus quinquecostatus (백리향 (Thymus quinquecostatus Celakovsky) 잎에 분포하는 두상형 분비모의 미세구조)

  • Shin, Hyun-Chur;Yu, Seong-Cheol
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.159-170
    • /
    • 1998
  • The glandular secretory system of the capitate gandular trichomes in leaf of Thymus quinquecostatus Celakovsky was examined by transmission electron microscope. The glandular trichome was consisted of three cell layers; an basal cell layer, a stalk cell with single-celled intermediate layer and a discoid secretory layer with thickened cuticle. The secretory cell was dense, rich in mitochondria, rER, plastds, Golgi complex and had many vesicular structure. Typical plastids with reticulate body and plastoglobule were present in glandular trichome. The tytoplasm of secretory cell was filled with osmiophilic secretory materials. The secretory vesicles, originated from Golgi complex, appeared as membrane bounded vesicles and secreted to the outer wall surface. The presences of well developed rER, mitochondria, Golgi complex, and membrane-bounded vesicles fused with plasmalemma in the secreting cells indicate that the granulocrine mechanism of secretion was occurring in T. quinquecostatus. Subcuticular cavity was developed between the cuticular layer and the secretory cell wall, and it formed above the secretory cell upon separation of cuticle-wall.

  • PDF

Characterization of Purple-discolored, Uppermost Leaves of Soybean; QTL Mapping, HyperspectraI Imaging, and TEM Observation

  • JaeJin Lee;Jeongsun Lee;Seongha Kwon;Heejin You;Sungwoo Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.187-187
    • /
    • 2022
  • Purple-discoloration of the uppermost leaves has been observed in some soybean cultivars in recent years. The purpose of this study was to characterize the novel phenotypic changes between the uppermost and middle leaves via multiple approaches. First, quantitative trait loci mapping was conducted to detect loci associated with the novel phenotype using 85 recombinant inbred lines (RILs) of the 'Daepung' × PI 96983 population. 180K SNP data, a major quantitative trait locus (QTL) was identified at around 60 cM of chromosome 6, which accounts for 56% of total phenotypic variance. The genomic interval is about ~700kb, and a list of annotated genes includes the T-gene which is known to control pubescence and seed coat color and is presumed to encode flavonoid 35-hydroxylase (F3'H). Based on Hyperspectral imaging, the reflectance at 528-554 nm wavelength band was extremely reduced in the uppermost leaves compared to the middle (green leaves), which is presumed die to the accumulation of anthocyanins. In addition, purple-discolored leaf tissues were observed and compared to normal leaves using a transmission electronic microscope (TEM). Base on observations of the cell organelles, the purple-discolored uppermost leaves had many pigments formed in the epidermal cells unlike the normal middle leaves, and the cell wall thickness was twice as thick in the discolored leaves. The thickness of the thylakoid layer in the chloroplast the number of starch grains, the size of starch all decreased in the discolored leaves, while the number of plastoglobule and mitochondria increased.

  • PDF

Ultrastructural changes of Haematococcus pluvialis (Chlorophyta) in process of astaxanthin accumulation and cell damage under condition of high light with acetate

  • He, Bangxiang;Hou, Lulu;Zhang, Feng;Cong, Xiaomei;Wang, Zhendong;Guo, Yalin;Shi, Jiawei;Jiang, Ming;Zhang, Xuecheng;Zang, Xiaonan
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.253-262
    • /
    • 2020
  • Haematococcus pluvialis is a commercial microalga that can produce high quantities of astaxanthin. Under induced conditions, some important changes in the subcellular structures related to astaxanthin accumulation were observable. For example, a large number of astaxanthin granules, oil structures and starch granules appeared in the thick-walled cells; Astaxanthin granules gradually dissolved into the oil structures and spread throughout the entire cell with the fusion and diffusion process of oil structures during the middle and late stages of induction; The plastoglobules were closed to the newly formed structures, and some plastoglobules would abnormally increase in size under stress. Based on observations of cell damage, the degradation of membrane structures, such as chloroplasts, was found to be the primary form of damage during the early stage of induction. During the middle stage of induction, some transparent holes were exposed in the dissolving astaxanthin granules in the cytoplasm. In thick-walled cells, these transparent holes were covered by oil substances dissolving astaxanthin, thereby avoiding further damage to cells. Given the relatively few oil structures, in non-thick-walled cells, the transparent holes expanded to form multiple transparent areas, eventually resulting in the rupture and death of cells. These results suggested that the high level of synthesis and the wide range diffusion of oil explained the expansion of astaxanthin in H. pluvialis.