• Title/Summary/Keyword: plastic zone size

Search Result 127, Processing Time 0.023 seconds

Nonlinear Analysis of Reinfored Concrete Beams by Displacement Control Method (변위제어법에 의한 철근콘크리트 보의 비선형해석법)

  • 김진근;이을범;이태규
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • In this paper a computer program for displacement control method was developed, in which a certain displacement of the structure is increased and the applied loads and another displacements are obtained. To simplify the nonlinear structural analysis, the relationships of moment-curvature were linearized as elasto-softening model for over-reinforced concrete beam and as elasto-plastic-softening model for under-reinforced concrete beam. Since the result of the analysis of reinforced concrete beam depended on the element size beyond elastic zone, the relationship of moment-curvature was modified for each element by using the concept of fracture energy approach. Overall, analytical results accurately predicted the load-displacement behavior of reinforced concrete beams.

  • PDF

Retardation of Fatigue Crack Propagation by Single Overloading (단일과대하중에 의한 피로균열전파의 지연거동)

  • 김상철;함경춘;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1992
  • Effects of strain hardening exponents on the retardation behavior of fatigue crack propagation are experimentally investigated. The retardation of fatigue crack propagation seems to be induced by the crack closure at crack tip. The phenomenon of crack closure becomes remarkable with the increment of strain hardening exponent and magnitude of percent peak load. The ratio of crack growth increment(a$\_$d//w$\_$d/) is influenced by a single overloading (a$\_$d/) and estimated plastic zone size (W$\_$d/=2r$\_$y/) is increased according with the increasing of strain ha.dening exponents. The number of retarded crack growth cycles were (N$\_$d/) decreased as the baseline stress intensity factor .ange( K$\_$b/) was increased. Within the limitation of these experimental results obtained under the single overload, an empirical relation between crack retardation ratio (Nd/N*), strain hardening exponent (n) and percent peak load (%PL) has been proposed as; Nd/N*= exp [PL $.$ PL$.$A(n)+B(n) ] where, A(n)=${\alpha}$n+${\beta}$, B(n)=${\gamma}$n+$\delta$, PL=%PL/100 and ${\alpha}$=0.78, ${\beta}$=0.54, ${\gamma}$=0.58 and $\delta$=-0.01, It is interesting to note that all these constants are identical for materials such as aluminum(A3203), steel(S4SC), steel(SS41) and stainless steel(SUS316) used in this experimental study.

  • PDF

Effect of specimen thickness on fatigue crack growth and retardation behavior of 7075-T73 aluminum alloy (7075-T73 알루미늄 합금의 피로균열진전거동 및 지연현상에 미치는 두께의 영향)

  • 김정규;박병훈;류석현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.670-679
    • /
    • 1989
  • The constant amplitude loading and 100% single overloading fatigue studies of domestic high tensile 7075-T73 aluminum alloy were performed to exmine the effect of specimen thickness and its mechanisms on fatigue crack growth behavior. The stage II fatigue crack growth rates tend to increase with decreasing specimen thickness under constant amplitude loading condition and this has relation with stress intensity factors and plastic zone size. The amount of retardation by an overload increased with decreasing specimen thickness when the crack depth and baseline stress intensity factors were constant. The crack depth is one of major factors which affect retardation phenomena by an overload and the amount of retardation increase with decreasing the crack depth. Its main mechanisms are crack closure and decreasing of K at the crack tip by branching and deflection of crack. And they are affected by near surface more severely than central portion of specimen.

Influence of overload on the fatigue crack growth retardation and the statistical variation (강의 피로균열지연거동에 미치는 과대하중의 영향과 통계적 변동에 관한 연구)

  • 김선진;남기우;김종훈;이창용;박은희;서상하
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.76-88
    • /
    • 1997
  • Constant .DELTA.K fatigue crack growth rate experiments were performed by applying an intermediate single and multiple overload for structural steel, SM45C. The purpose of the present study is to investigate the influence of multiple overloads at various stress intensity factor ranges and the effect of statistical variability of crack retardation behavior. The normalized delayed load cycle, delayed crack length and the minimum crack growth rate are increased with increasing baseline stress intensity factor range when the overload ratio and the number of overload application were constant. The crack retardation under low baseline stress intensity factor range increases by increasing the number of overload application, but the minimum crack growth rate decreases by increasing the number of overload application. A strong linear correlation exists between the minimum crack growth rate and the number of overload applications. And, it was observed that the variability in the crack growth retardation behavior are presented, the probability distribution functions of delayed load cycle, delayed crack length and crack growth life are 2-parameter Weibull. The coefficient of variation of delayed load cycle and delayed crack length for the number of 10 overload applications data are 14.8 and 9.2%, respectively.

  • PDF

A Study on the Effect of the Overload Ratio on the Fatigue Crack Growth Retardation (과대하중비가 균열성장지연에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Sung-Chan;Shim, Chun-Sik;Park, Jin-Young;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.306-311
    • /
    • 2003
  • A growing fatigue crack is known to be retarded on application of an overload cycle. The retardation may be characterized by the total number of cycles involved during retardation and the retarded crack length. The overload ratio plays an important role to influence the retardation behavior. The objective of the present investigation is to study the effect of different overload ratio on the retardation behavior. For DENT(double edge notched tension) specimens and ESET(eccentrically-loaded single edge crack tension) specimens, fatigue crack growth tests are conducted under cyclic constant-amplitude loading including a single tensile overloading with different overload ratios. The proposed crack retardation model predicts crack growth retardation due to a single tensile overloading. The predictions are put into comparison with the experimental results to confirm the reliability of this model.

  • PDF

Dynamic Recrystallization Effect on the Fracture Toughness of Al7050 Extruded Components (동적 재결정에 따른 Al7050 압출재의 파괴인성 변화)

  • J. W. Choi;Y. H. Jung;J. I. Son;B. G. Cheon;J. G. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.315-321
    • /
    • 2024
  • Although achieving a high fracture toughness is essential for designing reliable aircraft components using aluminum alloys, only a limited number of studies have discussed the relationship between microstructure and fracture toughness. Therefore, in this study, the effects of dynamic recrystallization on the fracture toughness of Al7050 extruded alloy were investigated. Because of the temperature deviation in the extruded large component, incomplete dynamic recrystallization (DRX) occurred that results into the higher Kernel average misorientation (KAM) and sub-grain structure fraction compare with the complete DRX region. Although incomplete DRX changes KAM and sub-grain fraction, the strength and ductility difference between complete and incomplete DRX regions are not in big difference. The accumulated KAM reduces the plastic zone size, and both cleavage and a lower micro-void fraction are observed in the incomplete DRX region. Based on the different fracture behavior from different DRX behavior, the fracture toughness of the incomplete DRX is lower than that of the complete DRX region. This result implies how a different DRX behavior from temperature variation affects to the fracture toughness of high-strength aluminum alloys.

Detection of Fatigue Damage in Aluminum Thin Plates with Rivet Holes by Acoustic Emission (리벳 구멍을 가진 알루미늄 박판구조의 피로손상 탐지를 위한 음향방출의 활용)

  • Kim, Jung-Chan;Kim, Sung-Jin;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.246-253
    • /
    • 2003
  • The initiation and growth of short fatigue cracks in the simulated aircraft structure with a series of rivet holes was detected by acoustic emission (AE). The location and the size of short tracks were determined by AE source location techniques and the measurement with traveling microscope. AE events increased intermittently with the initiation and growth of short cracks to form a stepwise increment curve of cumulative AE events. For the precise determination of AE source locations, a region-of-interest (ROI) was set around the rivet holes based on the plastic zone size in fracture mechanics. Since the signal-to-noise ratio (SNR) was very low at this early stage of fatigue cracks, the accuracy of source location was also enhanced by the wavelet transform do-noising. In practice, the majority of AE signals detected within the ROI appeared to be noise from various origins. The results showed that the effort of structural geometry and SNR should be closely taken into consideration for the accurate evaluation of fatigue damage in the structure.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.

Fatigue Crack Growth of Welded-Structural Steel under Simple-Variable Loading (단순변동하중(單純變動荷重)을 받는 용접구조용강(鎔接構造用鋼)의 피로균열성장(疲勞龜裂成長))

  • Chang, Dong Il;Bak, Yong Gul;Lee, Bong Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.103-113
    • /
    • 1987
  • Fatigue tests using a single-peak loading and a two-step loading were carried out to examine the fatigue crack growth behaviar and to find the appropriate analysis method. C-T specimens were made using structural steel SWS58 for the tests. From this, just after a single-peak loading acceleration effect was occured and after some times retardation effect was found. And eminent retardation effect was found after High-Low two-step loading. The transition effect of crack growth due to this variable loading was occured owing to the residual stress and the plastic zone size at the crack tip. And the behaviors of these are well explained by Elber's Crack Closure Model. Also I could find that the Wheeler's Retardation Model is a simple and appropriate theory among analysis methods of fatigue crack growth under the variable loading.

  • PDF